{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# YOLOV5" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## data\n", "\n", "[archive.zip](https://www.kaggle.com/datasets/andrewmvd/face-mask-detection) \n", "├── annotations \n", "└── images" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "W27lmG3cer8U" }, "outputs": [], "source": [ "# !unzip -q archive.zip" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Git Clone" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "M4sF6wHWe7DG", "outputId": "acfcc792-e538-40c0-ac27-0ab58e25525c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cloning into 'yolov5'...\n", "remote: Enumerating objects: 13286, done.\u001b[K\n", "remote: Total 13286 (delta 0), reused 0 (delta 0), pack-reused 13286\u001b[K\n", "Receiving objects: 100% (13286/13286), 11.98 MiB | 14.43 MiB/s, done.\n", "Resolving deltas: 100% (9254/9254), done.\n", "\u001b[K |████████████████████████████████| 596 kB 5.4 MB/s \n", "\u001b[?25h" ] } ], "source": [ "!git clone https://github.com/ultralytics/yolov5 # clone\n", "!pip install -qr yolov5/requirements.txt # install" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "Hhao9KWPfBG8" }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os\n", "import glob\n", "from datetime import datetime\n", "import xml.etree.ElementTree as ET \n", "import cv2\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## データの前処理" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "eDG_1VeZfEZf" }, "outputs": [], "source": [ "annotations_path = '/content/annotations'" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "NN-h9YMbfQX8" }, "outputs": [], "source": [ "dataset = {\n", " 'file':[],\n", " 'name':[], \n", " 'width':[],\n", " 'height':[],\n", " 'xmin':[],\n", " 'ymin':[], \n", " 'xmax':[],\n", " 'ymax':[],\n", " }" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "MyFUSWXyfXPu" }, "outputs": [], "source": [ "for anno in glob.glob(annotations_path+'/*.xml'):\n", " tree = ET.parse(anno)\n", " \n", " for elem in tree.iter():\n", " if 'size' in elem.tag:\n", " for attr in list(elem):\n", " if 'width' in attr.tag: \n", " width = int(round(float(attr.text)))\n", " if 'height' in attr.tag:\n", " height = int(round(float(attr.text))) \n", "\n", " if 'object' in elem.tag:\n", " for attr in list(elem):\n", " \n", " if 'name' in attr.tag:\n", " name = attr.text \n", " dataset['name']+=[name]\n", " dataset['width']+=[width]\n", " dataset['height']+=[height] \n", " dataset['file']+=[anno.split('/')[-1][0:-4]] \n", " \n", " if 'bndbox' in attr.tag:\n", " for dim in list(attr):\n", " if 'xmin' in dim.tag:\n", " xmin = int(round(float(dim.text)))\n", " dataset['xmin']+=[xmin]\n", " if 'ymin' in dim.tag:\n", " ymin = int(round(float(dim.text)))\n", " dataset['ymin']+=[ymin] \n", " if 'xmax' in dim.tag:\n", " xmax = int(round(float(dim.text)))\n", " dataset['xmax']+=[xmax] \n", " if 'ymax' in dim.tag:\n", " ymax = int(round(float(dim.text)))\n", " dataset['ymax']+=[ymax]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "sFqSNK7IffEX", "outputId": "4b7ca250-6d7f-4db2-e339-04832c7e5e82" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filenamewidthheightxminyminxmaxymax
0maksssksksss78with_mask301400108231186336
1maksssksksss116with_mask40022511688150122
2maksssksksss116with_mask40022516079193118
3maksssksksss116with_mask4002252354327287
4maksssksksss116with_mask40022530468336102
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " file name width height xmin ymin xmax ymax\n", "0 maksssksksss78 with_mask 301 400 108 231 186 336\n", "1 maksssksksss116 with_mask 400 225 116 88 150 122\n", "2 maksssksksss116 with_mask 400 225 160 79 193 118\n", "3 maksssksksss116 with_mask 400 225 235 43 272 87\n", "4 maksssksksss116 with_mask 400 225 304 68 336 102" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame(dataset)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 264 }, "id": "EJ-8rxJJeMUY", "outputId": "ac8d2fbf-6db8-41d1-fa2b-ba3180daab4b" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAAD3CAYAAAAngF4+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd5xcVf3/8ddnZ8vsZtMrSUhuioQiIXQpUZQQkQEEkaJ0VECaflV0FIXFOn6xAUHgy4+iEhEpShm6kCKQENOlhZJJ72Wym+075/fHvUl2N7vZNjNn7p3P8/GYR2bv3vKZye57z5xz7z1ijEEppZQ9BbYLUEqpfKdBrJRSlmkQK6WUZRrESillmQaxUkpZpkGslFKWaRArpZRlGsRKKWWZBrFSSlmmQRxQIpIQke+JyBIRSYrIoyISFpH+IvKsiGwSkW3e85HNtpshIj8XkTdEpEpEnhGRgSIyXUR2iMg8EXGarX+giLwsIltF5H0ROc/G61XKzzSIg+084FRgDDARuAz3//xBYDQwCqgBprXa7gLgYmAEMA5409tmAPAucAuAiPQCXgb+CgzxtvujiBycwdekVOBoEAfbHcaYtcaYrcAzwCRjzBZjzBPGmGpjTCXwC+AzrbZ70BjzkTEmCTwPfGSMecUY0wg8BhzurXc6kDDGPGiMaTTGLASeAM7NyqtTKiAKbRegMmp9s+fVwHARKQN+j9tS7u99r7eIhIwxTd7XG5ptV9PG1+Xe89HAsSKyvdn3C4G/pKl+pfKCBnH++S4wATjWGLNeRCYBCwHpxr5WATONMaeks0Cl8o12TeSf3rit2u0iMgCvv7ebngUOEJGLRaTIexwtIgelpVKl8oQGcf75A1AKbAbmAC90d0deH/NU3EG6tbhdIb8GSnpeplL5Q/TG8EopZZe2iJVSyjINYqWUskyDWCmlLNMgVkopyzSIlVLKMg1ipZSyTINYKaUs0yBWSinLNIiVUsoyDWKllLJMg1gppSzTIFZKKcs0iJVSyjINYqWUskyDWCmlLNMgVkopyzSIlVLKMg1ipZSyTINYKaUs0yBWSinLNIiVUsoyDWKllLJMg1gppSzTIFZKKcs0iJVSyjINYqWUsqzQdgEqO5xofDAwqtVjP6Ac6AWUeY9dzwuABqAeqAGqvMcOYB2wqtVjTSIWqc/eK1IqOMQYY7sGlUZONF4OHA4c4T0OB8bhhmsmGWA1sAhY6D0WJGKRlRk+rlK+p0Hsc040Ph6YAkwGjgQ+QW51OW3BDeXZwEvAvEQs0mS3JKVyiwaxz3gt3inAacBUYLTdirpsG/Aqbii/lIhFEnbLUco+DWIfcKLxMuAs4ELcEC62W1FavQv8HXgkEYu8b7sYpWzQIM5RTjReAHwOuAj4EtDbbkVZsRD4MzA9EYtssl2MUtmiQZxjnGh8JHAtcDEwwnI5tjQCceD2RCzymu1ilMo0DeIc4UTjhwPfBc4DiiyXk0sWAr8DHk3EIg22i1EqEzSILXKicQFOBb6H2w2h2rcGuBO4NxGLbLddjFLppEFsiRONnw78EjjUdi0+Uwn8FvhNIhbZabsYpdJBgzjLnGj8aOA24DO2a/G5DcCtwH2JWKTRdjFK9YQGcZY40fhY4FfAuYBYLidIlgE3JWKRx20XolR3aRBnmHcBxq3AdQTr/N9c8wZwZSIWedt2IUp1lQZxBjnReAT4I+4NdlTm1eN+6vil3oBI+YkGcQY40fhA3BH+r9iuJU+9DXwtEYvMtV2IUp2hQZxmTjR+FnAPMNR2LXkuBdyB239cbbsYpfZFgzhNnGi8BPcX/0rbtagW3gXOT8QiS20XolR7cul2ib7lRONj8AaLbNei9nIQMNeJxvX/RuUsbRH3kBONn4F7o5p+tmtRHfoLcFUiFqmxXYhSzWkQd5MTjYdwr4y7ET0v2E8WA+ckYpGPbBei1C4axN3gnRv8BO6N2ZX/bAbOSMQic2wXohRoH3GXOdH4UGAGGsJ+Ngh41YnGz7RdiFKgQdwl3vxwb+DODaf8rRR40onGr7JdiFI9DmIReU5E+nmPa5otP0lEnu3p/ntYW0JEBqVjX97Net4AxqZjfyonhIB7nGj857YLUfmtx0FsjDnNGLMd96yBazpa34+caHwK8Bow2HYtKiNucqLxe737QyuVdR0GsYjcKCI3eM9/LyKves8/JyLTm7U6Y8A4EVkkIrd5m5eLyOMi8p63brs/6N5+fuVt/x8ROUJEXhSRj0Tkam+dchH5l4gsEJGlIvJFb3kvEYmLyGIR+a+InN9q36Ui8ryIfKOrb5ATjX8aeBro1dVtla9ciXtBjlJZ15kW8Wxgsvf8KNxwLfKWzWq2XhT4yBgzyRhzo7fscODbwMG4H+lP6OBYK40xk7xjPgR8GfgU7t3LAGqBs40xRwCfBX7rhfupwFpjzGHGmE8CLzTbZznwDPCIMea+Trze3Zxo/FjgWdz+RBV81znR+P/aLkLln84E8XzgSBHpA9QBb+IG8mTcwNyXt4wxq40xKWAR4HSw/tPev0uBucaYSmPMJqBORPrhnq/7SxFZAryCO7nmUG/9U0Tk1yIy2RiTbLbPp4AHjTF/7sRr3c2Jxg8Dnic/Zk9We9zoROO3dryaUunTYRAbYxqA5cBluINVs3Fbo+Nxr+Pfl7pmz5uAwk6un2q1bcrb9kLcftojvZbzBiBsjFkGHIEbyD8XkZubbfs6cOq+ukVac6Lxg4CXgf6d3UYFys1ONP4D20Wo/NHZwbrZuBNczvKeXw0sNC2vBqkk863HvsBGY0yDiHwWGA0gIsOBamPMw7jTEB3RbJubgW3AXZ05gBON74/b2taBufwWc6Lxy20XofJDV4J4P+BNY8wG3L7aFt0SxpgtwOveYNltbewjHaYDR4nIUuAS4D1v+aHAWyKyCLgFaH060reAUhHZZ/+fd8XcM8DwtFat/OoeJxrvaFxDqR7TS5w9TjReAPwD0KutVHMbgWMSscgK24Wo4NIr6/b4GRrCam9DgKecaFxPX1QZk/UWsYj8AxjTavEPjDEvZrWQZpxo/BxAZwFW+/IP3Lu26UdIlXYdncWQdsaYs7N9zH1xovEDcc9ZVmpfzgZ+jPvJSam0yus+YicaLwLm0PIsC6Xa0wR8JhGLvG67EBUs+d5HXIGGsOq8EDDdicZ1NhaVVnkbxN5pSXrSvuqq0cA020WoYMnLrgknGu+NO2VO60FDpTrr3EQsogO8Ki3ytUV8OxrCqmfu9mZrUarH8i6IvXsL66WrqqcGAXqnNpUWedU14Z0lsRg4yHYtKhAMMFnPolA9lW8t4uvREFbpI8A0JxoP2S5E+VveBLETjQ/DvSGQUuk0CfduhEp1W94EMe5UTn1sF6EC6WdONJ6WSWpVfsqLIPamPLrEdh0qsPqz961Xleq0vAhi3F8SnaFXZdIVTjQ+2nYRyp8CH8RONH4cMMV2HSrwioAf2S5C+VPggxh3qiSlsuFyJxofZbsI5T+BDmInGj8aONV2HSpvFAE/tF2E8p9AX9DhRONPA2dkav8NW1az6elf7/66cft6+p14EeFRh7LlxbswTfVIQYgBp3yTkuET9tp+w99vpm7t+4RHHsyQL+85s27TM7fRsGkFpeOOpv9nLgVg+xt/o3jQaMoOOC5TL0elRz0wLhGLrLZdiPKPwLaInWh8EhkMYYCigSMZfvmdDL/8Tva79A9IUQllBxzHthkP0u+ErzD88jvpd+KFbJvxYJvb9znmSww6/TstltVvXE5BYQnDr5hG/boPSNXtpLFqK/Vr39cQ9odi4EbbRSh/CWwQ487cnDW1KxZT1G8/CvsOASBVX+3+W1dNqHxgm9uUOpMoKC5tsUwKCkk11mFMCpNqBCkgOfth+p54YWZfgEqnS51ovMx2Eco/AhnETjQ+ADg/m8fc+e4syg76NAADTr6Sba89yOo/Xsa21+7f3b3QGUWD9idU2pd1D32LsvHH0LhtHcYYSoaNz1TpKv36AhfYLkL5R9bnrMuSy4DSjlZKF9PUQM2Hb+0O3MpFz9H/5K/Ta8IJ7Hx3Nluev52hF/yi0/sbMOXK3c83Pn4rAz5/Hck3HqV+43LCziR6T9LxRx+4CnjAdhHKHwLZIga+kc2D1Xw8n+Kh4wj16g9A1dJ/UXbA8QCUHXgideuWdWu/1R/MoXjYeExDLQ3b1zH4rCjV779OqqE2bbWrjDnGicYPt12E8ofABbETjR8PHJjNY+58Zya9vG4JgFD5AOpWLQW8vuP+w7u8T9PUyI7/PEWfY8/BNNax+8JAk4KmxnSUrTLvKtsFKH8IXBADV2TzYKn6WmoTiyibcPzuZQO/cD3bXr2ftQ9cx/ZZf2bAqdcDULfuA7Y8f8fu9dZP/z6b/hmjdsViVt91KTUfz9/9vcoFcco/eTIFRWGKBo/BNNax9v5rKR42noJwefZeoOqJC51ovJftIlTuC9R5xN6N3zcCOsuuyhUXJGKRR20XoXJb0FrEJ6EhrHLLl20XoHJf0IL4LNsFKNXKaXpOsepIYILYicYFONN2HUq1UgZMtV2Eym2BCWLgKGCk7SKUaoM2ENQ+BSmItVtC5aqIE40H6XdNpVmQfjgitgtQqh1DgIm2i1C5KxBB7ETjfYFDbdeh1D6caLsAlbsCEcTApwjOa1HBpEGs2hWU8DrBdgFKdUCDWLVLg1ip7BjhROOO7SJUbvJ9EDvReCFwrO06lOoEbRWrNvk+iHFHo/XGKsoPdK4r1aagBLFSfnCw7QJUbgpCEO89PbJSuSmr98lW/hGEID7AdgFKddIwJxrvY7sIlXuCEMTaIlZ+oq1itRdfB7F3/b5Ob6z8RBsOai++DmJgNFBiuwilukBbxGovfg/icbYLUKqLHNsFqNzj9yDez3YBSnXRQNsFqNzj9yAeYrsApbpokO0CVO7xexAPtl2AUl2kQaz24vcgHmC7AKW6SLsm1F78HsR9bRegVBeVO9G4numjWtAgVir7tFWsWvB7EIdtF6BUN+jPrWrB70GslB+FbBegcovfgzhluwClukGDWLVQaLuAHjK2Cwiqv4ejM7aXbi15o7Rs56JwceHqotCgWjHD8P8fb/tSYQMR21WoHKJBrNq0o2kgU2tWHje1pmr3siqRyiXhkhVzwuGt88MlLC8qGlBZIA4i5dmur35LPWvuW0PjjkYA+p/Un0FTW56i27SzidX3r6Z+Yz0FRQWM+NoIwiPDNO5oZOWdK2mqbmLol4bS50j3zpQrbl/B8EuGU9S/KLPFh2r1k5xqQYNYtWlm6rDwlNDCFsvKjel9fE3tJ4+vqd29zIBJFBWueCscXj+3NFzzdnFx6cbC0PBGGImIZKo+CQnDLhhGqVNKU00TH1V8RPkh5YRH7BkH2/TMJkpHlTL6htHUra1j7V/WMuYHY0jOTTLgswPoc2QfEr9L0OfIPuxYuIPwqHDmQ9jVmI2DKP/wexBryyJDZqUmjuzMegIypqFx9JiGqtHnV+5pPVeK7FgcLknMKQ1vX1BSwvLiogFVImMQScv8gkX9iijq54ZmqDREyfASGrc1wog969SurWVwxL34smR4CfWb62lMNkIIUvUpTKNBCgTTZNjy0hZGf3t0OkrrDA1i1YLfg3iH7QKCaoUZNjJlZGuBmG5dvdjbmD4n1tROPLFV63m523peN7c0XPd2cXF4Y2FoRJNIp0K/PfWb6qldUUvpuNIWy8OjwuyYv4NeE3pR/XE1DVsaaNjWQL9P9WPVPavYOmMrw84bxtZXt9Lv+H4UlGSt+3tntg6k/MHvQbzJdgFBtpk+y4eQTNtl5AIytqFx9NiGqtEXtGo9L9rVeg6XyPKiogE73dZzWUf7bKptYuW0lQz76jBCpS1PRhgcGcy66ev48CcfUjKyhNLRpSAQKgvhfMdxt9/ZxKb4JkZdP4o1D6yhqbqJQacOomx8h4furiZgW6Z23h4RcYBnjTGfzPaxu0tELgOOMsZc1873rwaqjTF/zmphnSQik4DhxpjnOlpXg1i1a0lqbGXrfuJM6G1Mn8k1tRMnN2s9pyD1cVFR4q1wybq5peG6d0qKyzaFQsObt55No2HVtFX0O64ffY/a+yLLUGmIkV93VzfGsOx7yygeUtxinY1Pb2Tw6YNJzklSdkAZfY/uy8o7V+J8z8nQq2Xb0kuX5vXYhoiEjDFNPd2PMeaedNTTntZ1dqPuScBRQIdB7PdTkTbbLiDIZqYOs3YFWAEUjG9ocL5aWXXc7Rs3n/TyqrXHLEqsGvnvFauS09ZvXHLh9uTMbXckNpYOKNw66PMDq9vaR9POJlKN7jDCtpnb6DWhV4tWc936Ohq2NlB+UDmp+hR4Q4up+owOPWzpzEoi4ojIeyLykIgsE5HpIjJFRF4XkQ9E5Bjv8aaILBSRN0RkgrftISLylogsEpElIvKJVvse621zdDvHjovIRO/5QhG52Xv+UxH5hvf8RhGZ5+3/1mbb/lNE5ovI2yJyZbPlVSLyWxFZDBwnIhc1q/FeEQl5613uvd63gBM6eI8qROR73vMZIvJrb5/LRGSytzwkIr8Rkf96tV7vLT/Ze21LReQBESnxlie8/SwAzm3j66nee75ARB4T74whETna+z9Y7NXQF/gpcL73Gs/f12vRFrFq16zUxP1t19Ba35Tp+5ma2omh96v44ZJqDh1SgER3UG2kfurUPh8tSBLaVFxYXH76kOLqdXXDV9+3GgTCI8KMuGJEi31teGIDQ88ZCkC/T/VjxR0r2BzfzJCzM3qb6/VdWHc8cC5wBTAP+CpwInAm8CPgEmCyMaZRRKYAvwTOAa4GbjfGTBeRYtwLSIYCeGH9N+AyY8zido47G5gsIitwBxZ3BeJk4GoRmQp8AjgG98/X0yLyaWPMLOAKY8xWESkF5onIE8aYLUAvYK4x5rsichDwA+AEY0yDiPwRuFBEXgZuBY4EksBrQFc+khUaY44RkdOAW4ApwJW4s6JM8t6nASISBh4CTjbGLBORPwPfBP7g7WeLMeYI7/2K7fpaRAYBTwJTjDE7ReQHwHe8dR4FzjfGzBORPkA1cDP76FppUXgXXmQu0hZxBq0ww0b0ZMAuk04cVYi5pcXM9MXQdJD7tAkSq0gWFWxf+J3+iTfD4R0LwyWyokgGVhszBjckGHXtqN0bF/YpZNyPszLz1pourLvcGLMUQETeBv5ljDEishQ3XPoCf/JavAbYde7dm8BN4nbjPGmM+cA7k3Aw8BTwJWPMO/s47mzgBmA5EAdOEbe/fowx5n2vVTyVPSFZjhvMs4AbRORsb/n+3vItuH3jT3jLT8YN23leXaXARuBYYIYxZpP3mh8FDujC+/Wk9+989kxJNQW4xxjTCOD9kTgM971d5q3zJ+Ba9gTxo632u+vrTwEHA697dRfjvtcTgHXGmHneMXZ49Xe6cL8H8TrbBQRdugfssqlvKtXvpOqaSSdV1+xe1gRNHxYVffxWaXj93NKShveKi8s2hUIjUyLZmnarK0Fc1+x5qtnXKdzf3Z8BrxljzvYG42YAGGP+KiJzcS/fe05ErgI+xm1lrsRtVe8riOfh9m1+DLyMezP7b+AGHLit4F8ZY+5tvpGInIQbfMcZY6pFZAZ7bnBU26x/VYA/GWN+2Gr7s/ZRU2fsen+a6Fm2tT6rZdfXArxsjPlK82+KyKE9OBbg/yD+EPdN12v3MyRbA3bZEoLQhIaGsRMaGsZevKNy9/LtBQXbFoRLVswpDScXlpSEVhYVDqx2z9xIdz/56jTuqy97gv2yXQtFZCzwsTHmDhEZBUzEDdV64GzgRRGpMsb8ta2dGmPqRWQVbrfIT3Fb0r/xHgAvAj8TkenGmCoRGQE0ePVs80L4QNwWZFv+BTwlIr83xmwUkQFAb2AucLuIDMQ9NfVcoL3uk856GbhKRF7b1TUBvA84IjLeGPMhcDEwsxP7mgPctWs7cc+JH+Htbz8ROdrrmugN1ACV3uvqkK+DOBGL1DnReAKdzTlj2rrCLoj6pVL9P1dd0/9zrVrPy4qLPpoXDm+YWxquf6+4qHxzKDSih63nD3pe7W7/i9s18WPcLoRdzgMuFpEG3D7pXwJ9ALy+zdOBl70wfrqdfc/G7UOtEZHZwEhvGcaYl7x+3je9j99VwEXAC7h9yO/ihtOctnZsjHnHq/klESnADfFrjTFzRKQC9+P+dmBRt96Vlv4fbvfGEu/9uM8YM01ELgceE5FC3E8AHZ6BYYzZJO4pdY/sGtwDfuz1M58P3On1jdfgfjJ4DYiKyCLcTxCtuzx2E2P8fSaNE40/A5xuu46gGi3r18ws+c6IjtfMH9sKCrbOD5esnLun9Tyoxm09d2bmjdFLL126MuNFKl/xdYvY8x4axBmTywN2tvRPpQZMqa4ZMKVZ67kRGpcVF304tzS8cV7YbT1vCYX2T4kMbbZppYawaksQgvhd2wUEnZ8H7LKlEAoPrm8Yf3B9w/jLk3v6nrcWFGyZ7/Y9V75fXLzKYol7EZHPA79utXi5Mebstta3RURuwu0vbu4xY8wvbNSTCRrEqkNBG7DLpgGp1MBTqmsGnuK2nu/taP1sMsa8iDvwltO8wA1M6LbF71fWASzFPXNCZcjM1CSdYy09FtguQOUm3wdxIhapwg1jlSEzO3lLTNUhDWLVJt8HsecN2wUE2UozdGTKyFbbdfhcFek5HUsFUFCC+N+2Cwi6zfRZbrsGn5tFRVJvCK/aFJQgnmG7gKBbkhpX1fFaah/+ZbsAlbsCEcSJWGQdsKzDFVW3zUgd1pmLFVT7NIhVuwIRxJ5XbBcQZJ2dw061aTOwxHYRKncFKYifsl1AkOmAXY+8RkXS3/cSUBkVpCB+DQtzgeUTHbDrtg6nylH5LTBBnIhFGoBnbdcRZDpg1y31wD9sF6FyW2CC2PNEx6uo7tIBu255gYpk0nYRKrcFLYhfZO+766s00QG7bvmb7QJU7gtUECdikVq0Py5jdMCuy6qB9m68rtRugQpiz0O2CwgyHbDrkjgVSf2EpjoUxCB+AUjYLiKoFqfGVXa8lvL8xXYByh8CF8SJWCQF/J/tOoJqZuowvSVm5+yail6pDgUuiD334542pNIsHQN2VzxVw5DbKvnkH/ecDbd4fRPH3b+TQ++u4oxHqtlR1/b1Dy982MiEaVWMv6OS2L/3zDZ/4ZPVTLy7ih/9q3b3sp/PquOf7zX0tNzuuouKZMrWwZW/BDKIE7HIRvTczYxIx4DdZZOKeOGishbLvv5MDbGTS1j6zXLOPrCQ216v22u7ppTh2udqeP7CMt65tpxH/tvAO5uaWLKhidJCYck3y5m3tolkrWFdZYq5a5o468CinpTaXTtxGwNKdUogg9hzt+0CgqqnA3afHl3IgFJpsWzZlhSfHh0C4JSxhTzx7t53jHxrTRPjBxQwtn8BxSHhgkOKeOq9RooKoKbRkDKGhiYIFcDNr9Vx60nWTnt+mIrkdlsHV/4T2CBOxCIzgXm26wiiTAzYHTI4xFPvu+H72DsNrNqx96f6NZWG/fvs+ZEd2UdYU5nioMEhBpcVcMS9OznjgEI+3JoiZeCI/ULpLrOz7rR1YOVPQZg8dF9uRS97TruZqcPCp4TSO+vPA18Mc8PztfxsVh1nHlBEcUg63qiZP5y6ZwzxjEequff0ML+YVcfiDU2cMraQbxxZnNZ69+F5KpJvZ+tgKhgC2yIGSMQicbRVnHaZuMLuwEEhXrq4F/OvLOcrhxYyrv/eQTyit7RoKa/eYRjRu+WP8FPvNXDkfgVU1Rs+2pbi7+eW8fi7DVQ3ZO3mZz/J1oFUcAQ6iD232i4gaLwBuy3p3OfGnW7Apozh57PqufqovVuwR48I8cGWFMu3pahvMvzt7QbOnLDnQ11Dk+EPc+v5/gkl1DTArihvSkF9dub5fpKK5PysHEkFSuCDWFvFmbGZvt0esPvKE9Ucd/9O3t+SYuTvKrl/QT2PLG3ggDurOHDaTob3Fi6f5J7tsLYyxWnTqwEoLBCmnRbm8w9Xc9BdVZx3cBGHDNnTD3zXvHouPayIsiJh4tACqhsNh95dxZH7hegX7lpXRzek0Naw6iYxJvj3q3ai8dPQk+vT6r6i38w4JbTgJNt15JDpVCQvsl2E8qfAt4gBErHIc+gEo2mlV9i10AhU2C5C+VdeBLHnBiA7PYV5YFZq4v62a8ghd1CR/NB2Ecq/8iaIE7HIUuAe23UExUozdES6B+x8ajVwi+0ilL/lTRB7fgxstF1EUPRkwC5AvkVFUqeQUj2SV0GciEW2A9+1XUdQLE6NzfcAepaK5JO2i1D+l1dBDJCIRR4GXrFdRxDk+YBdNXC97SJUMORdEHuuAPSmLD2U5wN2t1CRTNguQgVDXgZxIhZZBVxluw6/y+MBu1eA39ouQgVHXgYxQCIW+TvwZ9t1+F0eDthtAi6hIhn8K6FU1uRtEHuuAz62XYSf5eGA3eVUJNfZLkIFS14HcSIWqQQuxL0ySnXDjNSkUts1ZNEdVCT1UnmVdnkdxACJWGQOELVdh19l4paYOWoR8H3bRahgyvsgBkjEIr8FHrBdhx+tMkPyYcBuPfBFKpJ7T6SnVBpoEO/xTWC27SL8KOADdjW4IbzSdiEquDSIPYlYpB44B0hYLsV3FqfG7bRdQ4YY4FIqkm/ZLkQFmwZxM4lYZBNwBpD2yTGD7LXUYdamS86wm6lIPma7CBV8GsStJGKR/wJfBrQ/sJNmB/MKu79Qkfy57SJUftAgbkMiFnkJOBdosF2LHwRwwO6fuJfBK5UVGsTtSMQizwBfQW8m3ykBGrB7ETifiqSeW66yRoN4HxKxyBPAxbgTQ6p9CMiA3cvA2VQk620XovKLBnEHErHII8DXcEfQVTsCMGD3InAmFcka24Wo/KNB3AmJWOQh3Jax9hm3w+cDdk8BZ1GRrO3JTkTkORHp5z2uabb8JBF5tsdV7tnX8enYVxeP+5CIfDnbx80XGsSdlIhFpuOe2haEj+Bp5+MBuzuBL/U0hAGMMacZY7YD/YBrOlq/m04Csh7EKrM0iLsgEYu8CHwW2GC7lly0ib4J2zV0gQG+S0XyBiqSnRoDEJEbReQG7/nvReRV7/nnRGS6iCREZDmvZXwAAAYCSURBVBAQA8aJyCIRuc3bvFxEHheR97x1xdv2ZBFZKCJLReQBESnxlu/aFyJylIjMEBEHuBr4H2/fk9up8yERuVtE5ojIx14r+gEReVdEHmq23t0i8h8ReVtEbm22PCYi74jIEhH5TRv7/5l3jFBn3jfVMQ3iLkrEIvOAY4G3bdeSaxanxvnlQpha4Dwqkr/r4nazgV3hdxRuuBZ5y2Y1Wy8KfGSMmWSMudFbdjjwbeBgYCxwgoiEgYeA840xhwKFuJfat8kYk8Cdifz33r73dUl+f+A44H+Ap4HfA4cAh4rIJG+dm4wxRwETgc+IyEQRGQicDRxijJkItDiX2vvDMhi43BijZxSliQZxNyRikRXACcBztmvJJTP8MYfdRmAKFcnHu7HtfOBIEemDe8HPm7iBPJmO71PyljFmtTEmhXsnNweYACw3xizz1vkT8Olu1NWWZ4wxBlgKbDDGLPWO/bZ3bIDzRGQBsBA3pA8Gkrh/qO4XkS/hzs23y0+AvsaYq719qzTRIO6mRCySBE4Hfoieawz4YsBuJjCJiuTr3dnYGNMALAcuA97ADd/PAuOBdzvYvPmVmk24rd99aWTP72d3/sDtOl6q1bFTQKGIjAG+B5zstXzjQNgY0wgcAzyO+/P9QrNt5+H+IRrQjXrUPmgQ90AiFjGJWCSG+8u41nY9tuXwgF0K+AVwchpm15iNG2CzvOdXAwtbtRArgd6d2Nf7gCMi472vL8b9YwHuzaeO9J6f0419d6QP7sBzUkSGAl8AEJFy3Fbvc7jdGoc12+YF3P7vuIikowbl0SBOg0QsMhuYhHtBQF7LwQG7TcAXqEj+mIpkOj65zAb2A940xmzA/RjfolvCGLMFeF1E/ttssG4vxpha4HLgMRFZivsH4x7v27cCt4vIf2j5iesZ4Ox9DdZ1hjFmMW6XxHvAX4FdnxJ6A8+KyBLg38B3Wm33GHAf8LSI5NPsLBkl2tWTPk40XgD8ALgF8PsFDt3yf0W/nTE1NP8k23V4XsG9jWXef1pRuU2DOAOcaPxA3FbDibZrybavhl6Z88uiBz5luYytuKemPWS5DqU6RbsmMiARi7yHO/p9DbDDcjlZlQMDdo8CB+VDCIvITV4XRfPHTbbrUl2nLeIMc6LxEcAfgTNt15ItH5dcuLlAzKAsH3YVcA0VybRcSqxUNmmLOMMSsciaRCzyRSACLLFdTzZkecCuErdP/iANYeVXGsRZkohFnsO9uuoSYIXlcjJqcWpcVRYO04B7n4hxVCR/SkVS7wGifEu7JixwovES3EtZbwKy/RE+4zI8YGdw+4FvoiL5cYaOoVRWaRBb5ETjfXAH9G7APTc1EPaXjWtnl3x7eJp3W497vuvvqEguTfO+lbJKgzgHONF4MXAR7snzh1guJy3SOGC3Ffcih2lpuCpOqZykQZxjnGj8s7gt5DMA395mcG7JNf8ZKtuP6sEu3gWmAQ9RkazuaGWl/EyDOEc50fgw4HzgQuBoy+V0WTevsNsAPAI8TEVyfvqrUio3aRD7gBONjwe+ihvKB1gup1O6MGBXjTt9/cPAS2m6H4RSvqJB7DNONH4YMBU4Bfc+uDl5D+AOBuzexr2T14vALCqSde2sp1Re0CD2MScaD+Pez+IU7zGRHOpXbjZgtwr3JuovAS9SkVxttzKlcosGcYB4wXwo7i05D/f+nQj0ymIZK3FnoFj0eHHF3KMKli2gIrk+i8dXync0iAPOuzXnGNzpcRxgNDAc97zl/XDnNivF7eIIs/ftO1O4NxBv/tiOG7grvMeu5ysTsYie4aBUF2kQqxacaFzYE8h1iVikxnJJSgWeBrFSSlmmN/1RSinLNIiVUsoyDWKllLJMg1gppSzTIFZKKcs0iJVSyjINYqWUskyDWCmlLNMgVkopyzSIlVLKMg1ipZSyTINYKaUs0yBWSinLNIiVUsoyDWKllLJMg1gppSzTIFZKKcs0iJVSyjINYqWUskyDWCmlLNMgVkopyzSIlVLKMg1ipZSyTINYKaUs0yBWSinLNIiVUsoyDWKllLLs/wM668unA+4nvAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = df['name'].value_counts()\n", "plt.title('name')\n", "plt.pie(x, labels=x.index, autopct='%.1f%%');" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "YjM-fEw2fjZw" }, "outputs": [], "source": [ "name_dict = {\n", " 'with_mask': 0,\n", " 'mask_weared_incorrect': 1,\n", " 'without_mask': 2 \n", "}" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "Mq6EvofZflUH", "outputId": "19059be2-9726-4bfc-ec2e-954b80d7c0de" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filenamewidthheightxminyminxmaxymaxclass
0maksssksksss78with_mask3014001082311863360
1maksssksksss116with_mask400225116881501220
2maksssksksss116with_mask400225160791931180
3maksssksksss116with_mask40022523543272870
4maksssksksss116with_mask400225304683361020
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " file name width height xmin ymin xmax ymax class\n", "0 maksssksksss78 with_mask 301 400 108 231 186 336 0\n", "1 maksssksksss116 with_mask 400 225 116 88 150 122 0\n", "2 maksssksksss116 with_mask 400 225 160 79 193 118 0\n", "3 maksssksksss116 with_mask 400 225 235 43 272 87 0\n", "4 maksssksksss116 with_mask 400 225 304 68 336 102 0" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['class'] = df['name'].map(name_dict)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fNoxqTPofnjM", "outputId": "dccc2e0b-5a1e-47e2-98a8-e53d9dd6e21a" }, "outputs": [ { "data": { "text/plain": [ "500" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "filenames = [*os.listdir('/content/images')]\n", "len(filenames)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WdSLICV4fukf", "outputId": "6e49a4f4-4089-4394-9d7c-a74ff1e36b89" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Length of Train = 450\n", "==============================\n", "Length of Valid = 35\n", "==============================\n", "Length of test = 15\n" ] } ], "source": [ "# data split\n", "from sklearn.model_selection import train_test_split\n", "train, test = train_test_split(filenames, test_size=0.1, random_state=22)\n", "test, val = train_test_split(test, test_size=0.7, random_state=22)\n", "print('Length of Train =',len(train))\n", "print('='*30)\n", "print('Length of Valid =',len(val))\n", "print('='*30)\n", "print('Length of test =', len(test))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "ESUba0E6f4Kp" }, "outputs": [], "source": [ "os.mkdir('./yolov5/data/train')\n", "os.mkdir('./yolov5/data/val')\n", "os.mkdir('./yolov5/data/test')\n", "os.mkdir('./yolov5/data/train/images')\n", "os.mkdir('./yolov5/data/train/labels')\n", "os.mkdir('./yolov5/data/test/images')\n", "os.mkdir('./yolov5/data/test/labels')\n", "os.mkdir('./yolov5/data/val/images')\n", "os.mkdir('./yolov5/data/val/labels')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "id": "7KBE4CVSf9er" }, "outputs": [], "source": [ "from PIL import Image\n", "\n", "def copyImages(imageList, folder_Name):\n", " for image in imageList:\n", " img = Image.open('/content/images/'+image)\n", " img1 = img.resize((640, 640))\n", " _ = img1.save(\"./yolov5/data/\"+folder_Name+'/images/'+image)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "rQ7HukEjgCrm" }, "outputs": [], "source": [ "copyImages(train, 'train')\n", "copyImages(val, 'val')\n", "copyImages(test, 'test')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "WTDZ5drwgPIP" }, "outputs": [], "source": [ "df['xmax'] = (640/df['width'])*df['xmax']\n", "df['ymax'] = (640/df['height'])*df['ymax']\n", "df['xmin'] = (640/df['width'])*df['xmin']\n", "df['ymin'] = (640/df['height'])*df['ymin']" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "0UWrIXvSgmu_" }, "outputs": [], "source": [ "df[['xmax', 'ymax', 'xmin', 'ymin']] = df[['xmax', 'ymax', 'xmin', 'ymin']].astype('int64')" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "AEZM4QLqmbTS", "outputId": "fc6d383f-ed8d-4008-a472-0728093d6cf8" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filenamewidthheightxminyminxmaxymaxclass
0maksssksksss78with_mask3014002293693955370
1maksssksksss116with_mask4002251852502403470
2maksssksksss116with_mask4002252562243083350
3maksssksksss116with_mask4002253761224352470
4maksssksksss116with_mask4002254861935372900
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " file name width height xmin ymin xmax ymax class\n", "0 maksssksksss78 with_mask 301 400 229 369 395 537 0\n", "1 maksssksksss116 with_mask 400 225 185 250 240 347 0\n", "2 maksssksksss116 with_mask 400 225 256 224 308 335 0\n", "3 maksssksksss116 with_mask 400 225 376 122 435 247 0\n", "4 maksssksksss116 with_mask 400 225 486 193 537 290 0" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "1WWs7OOLgro5" }, "outputs": [], "source": [ "df['x_center'] = (df['xmax']+df['xmin'])/(2*640)\n", "df['y_center'] = (df['ymax']+df['ymin'])/(2*640)\n", "df['box_height'] = (df['xmax']-df['xmin'])/(640)\n", "df['box_width'] = (df['ymax']-df['ymin'])/(640)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "VOzw7cISg6Sp", "outputId": "5f72fdbe-c167-4138-cbef-ed12e7588b7e" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filenamewidthheightxminyminxmaxymaxclassx_centery_centerbox_heightbox_width
0maksssksksss78with_mask30140022936939553700.4875000.7078120.2593750.262500
1maksssksksss116with_mask40022518525024034700.3320310.4664060.0859380.151562
2maksssksksss116with_mask40022525622430833500.4406250.4367190.0812500.173437
3maksssksksss116with_mask40022537612243524700.6335940.2882810.0921880.195312
4maksssksksss116with_mask40022548619353729000.7992190.3773440.0796870.151562
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " file name width height xmin ymin xmax ymax class \\\n", "0 maksssksksss78 with_mask 301 400 229 369 395 537 0 \n", "1 maksssksksss116 with_mask 400 225 185 250 240 347 0 \n", "2 maksssksksss116 with_mask 400 225 256 224 308 335 0 \n", "3 maksssksksss116 with_mask 400 225 376 122 435 247 0 \n", "4 maksssksksss116 with_mask 400 225 486 193 537 290 0 \n", "\n", " x_center y_center box_height box_width \n", "0 0.487500 0.707812 0.259375 0.262500 \n", "1 0.332031 0.466406 0.085938 0.151562 \n", "2 0.440625 0.436719 0.081250 0.173437 \n", "3 0.633594 0.288281 0.092188 0.195312 \n", "4 0.799219 0.377344 0.079687 0.151562 " ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "id": "lgIRfK6whFPM" }, "outputs": [], "source": [ "df = df.astype('string')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "id": "WHN-dj81hPRT" }, "outputs": [], "source": [ "def create_labels(image_list, data_name):\n", " fileNames = [x.split('.')[0] for x in image_list]\n", "\n", " for name in fileNames:\n", " data = df[df.file==name]\n", " box_list = []\n", " \n", " for index in range(len(data)):\n", " row = data.iloc[index]\n", " box_list.append(row['class']+' '+row['x_center']+' '+row['y_center']\\\n", " +' '+row['box_height']+' '+row['box_width'])\n", " \n", " text = '\\n'.join(box_list)\n", " with open('./yolov5/data/'+data_name+'/labels/'+name+'.txt', 'w') as file:\n", " file.write(text) " ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "id": "an9ZzWgJheTv" }, "outputs": [], "source": [ "create_labels(train, 'train')\n", "create_labels(val, 'val')\n", "create_labels(test, 'test')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## モデル構築" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Gw-QD8bwhxRF", "outputId": "a99428c7-9a02-4f33-a8f6-bb2db46d0d18" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/content/yolov5\n" ] } ], "source": [ "%cd yolov5" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "id": "tzYJDpc9hzJU" }, "outputs": [], "source": [ "import torch\n", "from yolov5 import utils" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "id": "zskvuEfNh25c" }, "outputs": [], "source": [ "yaml_text = \"\"\"train: data/train/images\n", "val: data/train/images\n", "\n", "nc: 3\n", "names: ['with_mask', 'mask_weared_incorrect', 'without_mask']\"\"\"" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "id": "BJaZj6CjiBZV" }, "outputs": [], "source": [ "with open('data/data.yaml', 'w') as file:\n", " file.write(yaml_text)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "osHb4RowiEKd", "outputId": "d3b5c5cb-2fcb-460f-cd01-b17cbeace729" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "train: data/train/images\n", "val: data/train/images\n", "\n", "nc: 3\n", "names: ['with_mask', 'mask_weared_incorrect', 'without_mask']" ] } ], "source": [ "%cat data/data.yaml" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 学習" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ke7v_37RiVBY", "outputId": "26f6e409-c2cb-46b3-8be3-1fbf8bb25cce" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=data/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=100, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n", "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n", "YOLOv5 🚀 v6.1-177-gd059d1d torch 1.11.0+cu113 CUDA:0 (Tesla K80, 11441MiB)\n", "\n", "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n", "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n", "Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n", "100% 755k/755k [00:00<00:00, 18.3MB/s]\n", "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt to yolov5s.pt...\n", "100% 14.0M/14.0M [00:00<00:00, 120MB/s] \n", "\n", "Overriding model.yaml nc=80 with nc=3\n", "\n", " from n params module arguments \n", " 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n", " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n", " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n", " 4 -1 2 115712 models.common.C3 [128, 128, 2] \n", " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n", " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n", " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n", " 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n", " 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n", " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n", " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 12 [-1, 6] 1 0 models.common.Concat [1] \n", " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n", " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n", " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 16 [-1, 4] 1 0 models.common.Concat [1] \n", " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n", " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n", " 19 [-1, 14] 1 0 models.common.Concat [1] \n", " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n", " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n", " 22 [-1, 10] 1 0 models.common.Concat [1] \n", " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", " 24 [17, 20, 23] 1 21576 models.yolo.Detect [3, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n", "Model summary: 270 layers, 7027720 parameters, 7027720 gradients, 15.9 GFLOPs\n", "\n", "Transferred 343/349 items from yolov5s.pt\n", "Scaled weight_decay = 0.0005\n", "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n", "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/yolov5/data/train/labels' images and labels...450 found, 0 missing, 0 empty, 0 corrupt: 100% 450/450 [00:01<00:00, 435.22it/s]\n", "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/yolov5/data/train/labels.cache\n", "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.6GB ram): 100% 450/450 [00:05<00:00, 78.25it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/yolov5/data/train/labels.cache' images and labels... 450 found, 0 missing, 0 empty, 0 corrupt: 100% 450/450 [00:00" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAEoCAYAAAAwr+zjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e9Bty3YX9BtrfXufex73GS4xN5AgBaigBX8oUJAykVBiKlBQUhogBhLgD43gCwQLUQMCWgqCyLNKeYYQnloqiLFUEp6lIoJQ4gNIcvMgQJKbc3PuOWfv75vDP/o1xujRPXuub31773P2GOfsb605Z/fo0d2jf785R/fsRcyMkJCQkJCQkJCQkJCQa8vpeRsQEhISEhISEhISEvL+lHjYCAkJCQkJCQkJCQl5EImHjZCQkJCQkJCQkJCQB5F42AgJCQkJCQkJCQkJeRCJh42QkJCQkJCQkJCQkAeReNgICQkJCQkJCQkJCXkQiYeNkPecENGXE9E3TK5/ERF927O0aSRE9KeJ6Bc+bztCQkJCQi6T9xjnfA0RfW3+/nlE9P1EdH4G5X4zEf3khy4n5L0p8bDxksj7CQiY+Q8w8z9djomIieiHXaKLiP56BuPvJ6I7InpHHP+Kg7oqyF9oyxcR0SbK/3Yi+lWX6gsJCQl5XhKcM5YchCpc8/eJ6I8T0edcx9omzPytzPwGM9/t2POgD0tE9HuI6Emu76eJ6C8R0Rc+VHkhL57Ew0bISy3M/KMyGL8B4M8A+EXlmJl/XUlHRDfPyKTvEPZ8AYBfQEQ/4xmVHRISEhLybOQXZZz/EQA+AuA32gTPkHeehfxHub4fAvDbAfzxZzHjEvJiSDxsvIRCRF9JRH+OiH4jEX2KiP4WEf2EfP6TRPR3iejnifRfSkR/mYjezNe/xuj7uUT0LUT03UT078iIFhGdiOjfIqK/ma//YSL62MCubySin5m//8QcPfrSfPzFRPR/CPv/bP7+TTn7X8lRky8T+n5Jrst3EtFXHWyjH5LL/wVE9K0A/icv+lPqSkT/DIBfAeDLsh1/RST7/NzenyaibyCiH7BiAzP/bQB/HsCPFOX9BCL6X4no+/LnT8jnv4yI/jYRfSgffwkR/R0i+viReoeEhIRcW4JzxsLM3wPgjwH4R7OObyaiX05EfxXAW0R0Q0Q/noj+fG67v0JEXyTK/AdzPT5NRP8DgB8grhUeu8nHHyOi301E30FE30tE/xURvQ7gvwPwCWqz6p/Ya0ci+grRB//2Sl1zfRnA1wH4GIDPzrpORPQrs76/S0S/j4g+nK/9SSL6DaLcryei37VaXsiLIfGw8fLKjwPwVwF8FtLA/3oA/wSAHwbgXwDwW4jojZz2LQA/Fyn68qUA/iXK0XYi+pEAfhuALwfwOQA+DOBzRTm/GMDPAPCFAD4B4HsB/NaBTd8I4Ivy9y8E8LcA/JPi+BttBmYu1390nhH4Q/n4HxC2/AIAv5WIPjprkIF8IYB/BMBPmSVi5j8F4NcB+EPZjh8tLv8cAF8F4AcCeAzgl64UTEQ/HMBPBPAX8/HHAPwJAL8Zqd/+EwB/gog+K9f7zwP4zUT0WQD+CwC/kJn/3mpFQ0JCQh5QgnMcycGnnwngL4vTPzvX+yNIN+R/AsCvQbpB/6UA/pgIJH0dgL+E9JDx7wP4eRjL7wfwGoAfhcRHv5GZ3wLwJRCz6sz8HZi0Y+6D3w7gK/K1zwLwg/bqmvOekfr2bwP4rnz6K/O/fwrADwXwBoDfkq/9fABfQUQ/iYi+HMCPBfCvrpQV8gIJM8e/l+AfgG8G8JPz968E8P+Ka/8YAAbw2eLcdwP4MQNdvwkJpADg3wXwB8W11wA8EWX9XwC+WFz/HABPAdw4er8YwF/N3/8UgF8I4C/m428E8M8K+/+syMcAfpg4/iIAb8syAPxdAD9+p43+NNINOgD8kKz3hxq93zZp168B8LWOzl8pjr8awJ8alP9FADYAnwLwZi7/jwN4nK9/BYD/xeT5CwC+Mn//CIBvBfB/Avidz9vn4l/8i38v77/gnDHnZF74TMb6bwfwBwB8XLTbzxdpfzmA32/y//dIDxWfB+AWwOvi2tcVHhI8dpPbYQPwUccej9uG7Zj74OvFtddlHzj6fw+Ad3J9387fv1xc/x8BfLU4/odknyE9jH0SwN8H8AXP27fj3/F/MbPx8sp3ie9vAwAz23NvAAAR/Tgi+p+J6O8R0fcB+BfRpmo/gQQCyDo+g0QaRT4fwH+Zp38/hQRgd8jTp0b+AoAfQUSfDeDHAPh9AH5wjvz8WADf5OQZyXcz8604/kypz0H55H6SXfk7B+z4Dmb+CDN/COnh4W0Avzdf+wSAbzHpvwU5qsfMnwLwR5Cm438DQkJCQl4cCc7R8q9krP9cZv5y1rPQknc+H8A/V+qT6/QFSDf/nwDwvZxmJ4pYjijygwF8DzN/72J9Zu1o++At6D7w5Ncz80eQHg7/cQD/MRF9Sb5mue1bkB5qSp/9NwDOAP5vZv6zi/aHvEASDxshK/J1AP5rAD+YmT8M4HcAoHztOyGmT4noVaQp1SKfBPAlGVTLvw8w87fbQjJp/CWkKdK/xsxPkJYG/RsA/iYz//0HqNuesPj+FhJQAqjTwR8fpL1/wczfh9T2Py2f+g4kApDyeUiRMRDRj0Gacv6DSEutQkJCQt6L8jJzDqC55JNIMxuyPq8z83+I1BYfze9dFPm8gc5PAvgYEX1kpzyZftSO34n08AIAIKLXoPtgXLEkfw3An0NaKgb03FZmbMrD6K9Fetj5HCL62SvlhLxYEg8bISvyQaSIyDtE9GOR3kEo8kcB/DRKL/s9RlpKROL67wDwa4no8wGAiD5ORD99UtY3AvhFaGtl/7Q59uS7kNZ5PrT8PwA+QOnlxUcAfiWAV4wdP4SIrjKu8vrlnwXgr+dTfxIpCvdz8kuDX4b08vh/S0QfAPC1SC+pfxWAzyWir76GHSEhISHPWIJzmnwtUn1/ChGdiegDlDYr+UHM/C0A/jcAv4qIHhPRF6AFp5Qw83civQj+24joo0T0iIjK+yffBeCzykvZWWbt+EcB/FQi+oLcB78aB+4niegfRpqdKdz2BwH86/ll9zfQ3n+8zTZ+FdJ7Hj8PwH9GRJ/r6Q15cSUeNkJW5KsB/Goi+jTSWs0/XC4w819HepHs65GiHd+PtFb13ZzkP0WKUH1Dzv8XkV4UHMk3IhHNNw2OPfkaAL83T/f+84dqdkDyTMNXA/jPkWYT3gIgd6f6I/nzu4nof7+wmLojCNJU8seQXoQEM383gJ8K4JcgTVn/MgA/NUff/gMAn2Tm387M7yK9cPlr8kvmISEhIe8lCc7JwsyfBPDTkQJJfw9pxuHfRLt/+zlI9fseAP8e0lKwkXwF0rsQfwOpzf61XMbfQLrh/1u5Tp/ApB1zH/zLSDNQ34n08vje73T8ssxtbwH4BgC/G8DvzNd+F9LL69+E9OL4OwB+MaXdFX8f0jbB387MfwZp85PfTUTUlRDywgoxX3XlR8hLLjkq8SkAP5zT1q0hISEhISEPIsE5ISEvvsTMRsi9hYh+GhG9lteN/nqk3ZC++flaFRISEhLyfpTgnJCQ95bEw0bINeSnI73g9R0AfjiAn8UxZRYSEhIS8jASnBMS8h6SWEYVEhISEhISEhISEvIgEjMbISEhISEhISEhISEPIjezi2++9SkmJhAIqP8YBG4bzTkTI0QovwKZLr9IewZIe4khJ3YoVQ+E8iuWlE8CrDJy06Nmhkob2QLZXGMwbxMjCWmjBcpFFXu0DfWIOfVMrgAzg7Fl05Ke9CuOG8C6L1Mb1F/tHEpLw7lJCMxQ+SinA5c6lroMtaJUK1uejkWGVgcGCVvLRhTEKRGTccXcbiCAmHIvUOsvgmrP8puw6jJR6zFRz/3ZQNm3or2LTaDkY7gTulrfuS21MgPJpg3Q/Htl/lL6eHU3alcHRYqx4KUgfa3Yw+0EE7cyuzYg00bZT7ZkLVPrK5g2KvkI+lrx4/kYtH1ejOfaTvVvuSaKYYYaH0SkTGTTcPZ8yXc+n7Hdbf/fhu2P/KQv/OJfMTX4JZXgqeCpVkTwFJzvvgRPNQmeSubdi6ewYcNP+sIvdkfS9GFDCdVhYM7LM/11Mn14qRC1zlTAcXT3s93kDlhTqj6bWlAGee07eZAqvyHnnNBTiKIQhzSyYC01MC7lUFMgkhLoBID1pFXKf6Pqx6zLGoE5iWsWJGq/cLEpERBn0K1NSOTozm0CzrCXKyvQo7VNq4fB38a+xugClbUs0VZ9bwpVO05Cgiy7QjutjXwLSZX26Xxtt8ysZZS0+ml/oo7Dvplq6dV61t9Vyq7x98xPmivgZZMaLnDXakTaJ3UB6aaSTsKfCNg6IhHjY9Bgvk/K6xqIa2HlG7eelWOzALgWzuOtHev6WWAXRDDr8xAtwVPBU8FTwqbgKSXBU8+Np6YPG2VAykrtoXGFIdkRJJxFPEHZSrg2OCA9Bu4VqiD1ncgOJr8MhiUoqp9tgFgQZnV9pl+fa0NqjBN5NKDCkwYs9YTKFdTADdg6GyRRsW6pAtQMCX6sHY9FWvFZIi/1abgVlkFNnhv4RUJ7VETKCsWYNSDdzqP4nwI4o778YRKtOBMPgPf9jwQIsjR+UpoGm9KvpqxJ3aRpo1KKW5HoSsoONKD1WWlO4SK9yF59lPVNyUoEU6o/ObdYXTpHRjdWnaHqbBtv5UahK52Kb1OtvRwDvW0SvKU/HWnnl1OCp6Tm4KngKavYfg+eGhcePPVQPLX7sNE+97xE5hCGGq+xwDED8y4tZibYKzNje1cujVtqfElUalS3pF/aU4BedpIE8PRpnyArQJHIwxIC+hZK2JdcrV1yCET/MaqShnK9xKKY2VOVr20ogaQa5YGIkxRwUMTRhoIkjVZmy5PScnpqZzbgTWinuD51t3bLqUTETEYuvCr1fXnKETE/8uRJizSV4x7IbTndzcRDhriFf8j+Up5pfIio+YB1185/RUGq2lUf125kwLSTHDMysxinJl9XqgHNvi37mybFFTNMEHVNYE3N2vxH+fbke0/Qa2D+skrwlG/HUGvwlKhv8JSvI3gqeOq6PDV92ChPRKimHZHSG+OBrpM3jy5PyDa6lI3qrCyfFYN4kHRoR6OrY6R+tE1Ezm5a20vjOeSocoUa5PCzV0XZACDBT5GYLbdFKUjo6CyTT7oZuBuAQ1tX6k99LK6ZY50516v4dFnLXO4xeMuf2qat0ViSbSvsoi3LOmWBHTDl1A24LAmrBunPgQS5zGijb+M0JlrypWEFSmtND2F/AZO1dKvX67ge3GwoH81/mAltzaoF8PTZ7By1yBj4tTS7xgSUtVTA3TqdNW8Fcg+o/fpY303+C/B2qANfKgme2jX6QFqTM3gqeCp4SlwDgqcu46mdmQ3X+jpAPbV1TBUjZ346aig7dguYq6Hodaj+2hWZ7ahA4IlzyVsL1waYjgIckfYkbAzPehmsgKbLP9OtrmY3Inkdjm5BvCp5IVM1dLR+C/pCQR8VLNeTo/vi1J0yKBk9dQpw84nlBOR34bIdJ+eFqxyBYmYkzGB1/8G5zspkIqQN3YQ+ec+ysARjbz2mTdusWZcW7dvxUzOo7U2EO+Yn+mT6jvSp3TYVRaWs0bStd82P6JCThsW/VC875T+SUf9UQIZDePVei9vNx44+lVGkN/wWYiR4SpcvtQZPBU8FT81NCZ56Njw1fdg45RiELNybMrbFe0f2sLkj1b/yyjq3zh26GyQi6tHn3Bsctj1KGftWjvVZxxu3aC3sAGM0OBb17nR4L4INdHkmK7zdB66WMr+gN7iaVPd6PHDwSUn0/1n0V7fjc2L3MtjL1HgFbBG9TEmS1RV0wFV5An6Gt4OEvRmgHPFqL+KJdhFpZTRl2P3VTueaTaat2Iko2dRWm0zG+lCUNvYHabOxvxKi9s9937KAWdpZlyXTyAiObG93Kln0QQVwh3esD/Cy/baPZ/0TEjzVaYNuj1LGvpVjfcFTwVPBU/13BE9JhZMsC7tRJQcH+qe+QbzBpN0BWVfT6ByA6vCk/EZs/qY+LfGoweGU6YJGnUruAbxzvIGM1tOOzrdViFp5bS+zrnPUzJYcAYAqIMm24C6T9aN9EWUMALWqK1EpkgM96SADKoozZD90QQhyB105PyZbEh6V16O28drsEzk0Hie0p1xmmkr0gUT6Y5l+5NIT3PqEmGtdJfjY/LIM2ZbtAlQv4/BUdcvbRZBke5uiCcgv3M4jYr13s7ogl6msmW1TNTzwIlISvO05Wba6XrYzhL5Orn6NN3b9+Lj8ln/b0r+QmQRPBU+N9Q9LC54ydgRPeRI8NSq/5d/jqfWtbx2Zr4d8GMku3qqtTCjoUwCwj77YLeo6NxqCbUort+Fr547VYVU8S9ipuB4/vjFKVwaLMtDMMK9aFC0OAVDa1UcURzKelh23p8SL/tqIfLn77toD5P3fc0HWr8xgK3jZljpwcQjQmdJLfZIMOelVNxXMdarbRi2Uf7L82m5OWr4yta7JmBl55lyvFyXR59Kd1Hrhaov0db1Jo71h0mNLvMhoImLO/UIjatFPNY8s+9BYs21prrrnWx4XwMFgYve6pZoRmM/stcmI2r+QyyR4qpw7VodVCZ7yygiekvUNnprJy8FTyw8btZHlOWZ3cMix0CDGeZq9VEhoU/sVigTGFjv0LwHgB+anQaH6sKtqPpue5o8baANPbprc2grHZHeSnba8jnSmKb9ak0NrTTFoQwGe+vRYr1ziq5tKXmgtSxVcSzSsxo6qMhI/KqQAAkDZVaVmyRGnRg6lfun7hozwlhi41LflURXxzlmWL/XIpJJGfwZ402ZsoliKVLhQgRZvit7vY4L+4SqZXpWm8pQIn7Yzt+fI0UV7z+xi5cO2/NKYMro1KC/EleCp4KngKXs6eCp4Sih8Tjw1342qdL4wXOocOj3swCGZY9+qRWk+v6dTUc8VwFi6uH1pRwyu3YLG0CcH3H7OgxVa6IaOLNjJJhM5Or210yq7jA5w+tcnd14hdFRasB6B92wLS123AWMQ8i+9+nVT5bLKpscO6Z1snBrpMouNdUxqJCM6ZdzMoCnsOJnoFTFwIob9Qa1mN6np0GZnafsMxVuJVDVHKFvpFZ9I2YSduTIaxMRNQqoMatRXTaeXqXo7Za9brt08AsAZRJt7o9k3/SASJCJYozxe+i6l6IPummgPGS2sJBxPHUMJnhpJ8FSXKHiqLzd4KnhKnn8gnrrXMqp1aU9C9xHVN7YE6RRdmlG5x+yR03ozAB6XczSuMkvvAZSfp3Mqj18HTVEvS6+3RQiOJu7Xo65PWftqpdmzCNBqOUPJersmIUslK7r6U/P1wXYAm1uPPdKRaUx/eMGctvOHvNamp8/nBvCtbNZ/TwBjU+Sb1gKX7ymdBdukbwMzNZAifVNIlE9sQI2A1Rrou4a0VKAd9y11EqDPNbrar532c+da+OnYpPJ8065Rll87wpC6yrkNWzxsPAMJnjqeZy998FSfP3hKZQyeyvL+5qkDDxtNCYm/xcbuwVo4yDXWxyYAL4OMVHdRvjbCGCujYMB1pTmLPqetG9vQv+hUdNxbqLShaEUb0mhJxYEYOPlvP0XbRnSLcvgvi8lSWrPsRPR4aOpQjr0EuCMMp85eoai2umq6SuY2KxGZC7tZ8/Mle5fPhPTfHHUiKifzZPJJFnlqoFdN4QzgTfO2mWnkDO582moUp0StWnRRgjCj/OrwiQhyWrtEkNr0Ptex1V6qtSTRVRtmKDdbIOruZB8RgA/gjQjqOmd+aKx6P0nw1DEJngqeCp4Knnp4ntp52GgDslQm9Zc3KEw+99psIPfSD7QEPQ3CJZQfl9HuHws5sUAVuMboKTs3aPPuqZe6L9mjTTo7/kukQTiuMoeKb7NqIvVzSYOITyVgaZJS7th8gVzjhmJegDmmybWBAj/o0PuBN8UtI1BlxKR+OQLma+OigGM9ECgmrfDXaetlHafTSehMuJPOnMDMNWIi66tAL6MpM+dp4NQ228bmhrLcdOr147oNpe5UB8FD6YtoT3krozDF0L0mi3lnsOquRkAhngRPDXIieErYETwlCjDHwVPBU6q9rs9T84eNM6fprVzxa71edck0Ypmt0k5iemdRfKc/ZI3K36/75cl1ZYkhOD3iS7a6DhGU9ZUyLgOkC8byOJMHWmSu7ejRU49j9Vbtnhx56c4t10XTfCsx0KuGLZVeyweH+0v+ims7lrZ1EchBKUtgTqKNBamuNSGJPMXITV834yKVw6b/FUu1eop8TG2LyLIuttnd8jMD24kFIHP+bOTXiPAkruvp7HLzWG8dS1+cCnHk8kQ7NoDvZWOTyLakaPP0u686AhZiJHhqZI3KHzxl8gRP1bTBU+J68BSA6/PUzi+IU1U6By55/diwW50a7PcnVxY5lZyBnNZlQf1+UQWdd40wxPO1KbpEytrxPUyrStqXiwC9DHb293t383D3pSWrQQfxUlW5ZrdVGPm+Rw5g5V9ev3rnhwC+ICN9ZM7pKEqrVF+s9IlZNEmMpfxXTYvOwNsaC+lzBG/Pc7ctQW3UDabFeeIH9vzK+t8CeMXitH1htTzd/NWbodbOMtpWIksAw5JA9iKRNp0p6Vs/mj3GlZ+K/h3UXUao/FaJh42RBE9dIsFTbp7gKZMueGpiwLCM4Kle5g8bYq9uXeDiKIImgH7t1xqAO1qn5TT9FkVSV5en8Oru5ql4Pm19bdKfA3S/33pxCIJ0jgaEwKgvrAa3F/OTeNsCbtl8X1gnY3jtO0ZmTWErBRrz7k3Kx6VETPYocj8aowf1SjWW4lIrzUHljbfc4s4Y6dpV+p7opj2723rUpoiFGq+cWs+C4MVGk4hEP1gskmOlXFPT+4mNGvByvaKmy0vafg2rjjopW/O5hoHpsoyClfLb3xBPgqeCp4KnjkvwFIKnniFP7byzsRPFMU+qvYyfgGT+Y+LnaVO4Tbd+Km+f/eCx2wKObWS2x/4e7qP8LV8qd1VaGT6pNGdZA6xRydXeMojI+J0bBhgo5P702Gd0H6TBq0yZ2j0qX5bpkbOKEKQTGbSogcQlIojQ19FIuPgCESC3yutySPuzXt9G7rqqRlLGG3Bj3NJqYlno1EWzGGN62LUbj1n9ZNklnfUTeTMAAYD1LGM6Auw6WmuTeyOV/7a1rYTTqYBuG5d6rBf7q7VZ/1a2jYeMaKa0W4tK8YYTEU5E6UXGZ3sf8h6T4KngqeCpiyR4ShgaPNXKvz5PXbz17RH8tSB3+Qtv61LANR89SBmrdhTRnXyMwNbbab3OdbcU6WjWLDZP505pLNLNij/S12nsr6++1v19XO4F2LuSd9soR6aYe5g9iBCp31g94P0yzNNy8qAUn5syGWxGn7RN3FxJkGs3NgOLK6kX8Ba1HEYei2NaoG6kpSNhx9ygRracSJPXr4QzcG50UEgnrXm9AW8Z+fkEBuN0usHdHSfwDzkswVPrdhQJngqeAoKngqeuy1OLDxv6Sai7uhM5ekigNmcgbdVrDbWsPLn2+WfRKk8kotkpuGuK1w57OfJAKBGn9aydqFZpvmmmFluERObyIgMz7vWmfL3oz1Gxw/+qoC6VK5WX6Z/Vc7cNujWq2rd1/mw4y3TDknUSGfIzzN6DqdHTNZa1qeR36kq2irIOjtXc63GBfJB/D/TrlHiJ7lEC6eISsrYpPTWztzRdfjoxcHcPpn9pJHhqpMe3o5ai7AqeCp4KngqeujZPXTCzsTaVqwalMVQ+3e9PcffSpy1PUzNHS1a0NaMeMHdNKo5Xyd5DIMJ6/oHWbprcc/AxwLnCPigeFs2dDVTrGT26y3rbNpi1DfUp3CnGkyPrXVfSeQDOnECqvoyKnZcOjUKqio/KJIJSUgzqb/mi4olEEJvaFLc+LLVCGT3kHX3Wl+U0t1/OQX7ldsOy5alkb/z4pDLAMjY8VSwfkUX9yy1k2JnQZ6bscfGC+FEJnppL8FTwVK8weGqsL3gK9osob5+nFh42NNge9cRiBIFxjYUA7hMtToPUvTU+yMrr4ogk2F8qz+ImwSOanYFfI0VXAHFTRW+a2AJ2eykpW+OQwLOUaYkr5hDSr9JCD9AavaAulDFUtLZedMmkKoVn3eFTppTL14zAKzZYuu505+tqB4w9g4dJ93X0lCdAGj2Az6NXkzJW+dsjSi+duEouGTz7MfHekuCp+0nwFBA8FTwVPPVQPLXwsFGiO/fzqr3ca5Eju9+3biTvyVm/fNc3vr//eEm7XueUVu4gcvCp9oD0T7tdTG5NUYmA8CqY7/vBkTbr10QaXcua9uXBiaG0ofRHfdGhWhu68Qj/WHtbf+69wg4Aca7YmP8Mox8mgpJgB6kTF+5ZOsAcoqLwN4aKmthxrfIQ1y0cmbnvl9pGl+Ga9zLgAaRoxAHGVqmltGRNlv/kl/HiR/12JHhqRYKnrG0L2oKnEDyF4Cncj6fmDxv3CHZ0OxLUGEVuWMf5bL6StmnxwdYvt6XvoxF+We8tKfUj8W/TA2ynfjXlNJLRxx36QbFutV07qLdM9MHHk1LP+yxzUHZl44brK42/jSCnG9LicHWw35dvytR569+i11NcEIXUoWfpeK27KIhVyQl8uxsnQP/g106FHffsjr3p+dru+cXHgc8y2+jwZR2w329af8FFsa26MwJK+8QL4kMJnnqBJXhK5g+ekkUGT0m73u88tfOjfntX7+ltQuygrKWoaJUd8GTS8+C71Fe/7dp0ZI3lsyQEPQiKyDbat7m6SEmeP/X+ELaVTOKiow6CUbkrg2PH5oF+ua4a8PvsWBRrYStBe0lE3vaa33pJ27u7rQ/e87tdGyvpqE3+xha5l9anyfsqV9ZIELTLyFmDxP6CB0K3UrOjtEVlWkyL0d9E9NaPiGpc3qwv2tp7zz7rDZnxlA/kKHQ8awwleCp4KnhqwdTgqeCp58hT04eN6pMuwC547AUyAnMp4zWq8inUuzbSd2z/8Yeb6mSkH0rZS1fqeYJ9mkx5d0BNquktcOigDPQ2sIqRcm3rWEbXVkCi34s7Ff+8o32svso1sJ1lPXI4okr5dlIAACAASURBVNee+ln69pL9WwmthUpcc/tqrEXb9qNydi0wibW1IxKeFjk3WxetdQlyTB8eue+UfYVxvtumAM7chle5ObNRt5CxBE8FTwVPjSR4yq1D8NQhHdfgqfkyqvLEAmCMLPcD8pUfXDqocWKTrsPRTnro9ZQyEnbMjlZfO80rf/yIK8KQX4QJ7HDp+0P1llGlavExFXviVf95iWhSVwjT2f+r+BQReJuEFBj9FO2FL5S6NwR11wpuZymXkcuU2ayP6vNFVohvxd5WlozOHVXt7mC0GLXKRzlfK1sNty6k1JQwX6Up3r8SPHWv9EcleGpRgqdMGcFTY3tbWe9Xntp5QbzkHHX4ZY3sPe3PIwCXlCN/Yv2ow7byliIaNU0Dx0uGyIqd/Ut3omx3YLR9k0WtyugTefNndrSSjlk4m2jPVuWSR9pu6zEm1fEUaJ5OBFk68BIP5TBIFvxZuTlh/ztLRdUhelCa23bg5mgQEVzLPbqJmgNdD8RbT1gkLNkBoh7ki221NcX1vuE7DJzeFHKXZtVPhuuBu3Rj2zS+9OQgP2vK1Y2MXkoJngqeCp6apfW+B08V1cFTnm3X5qndZVTSquczJWjCGA8q1v1XQNU7m0AuNdeVoyVK+n3by/R0dYR8mQ8+gQ83FSA5SLHULfvTnr1pZS2nukBUcXGk8l4RGFnUAboYwoUYyMc2E/J9xj/X36iotbIlgHpl6fvsBGAbt5nas/uIQXksOWB+SAogOtGei11mYdnBPlFnsFbpnIH1LODvPSrBU8FT/YXgqUk2Y0u7GjwVPOUoqGnuw1M7MxvPc95vJmt27ZGOv53gfo/yYIC34kZPiveXZnNy7c62BacZC+enfr8dVKQIbpKD9pQ0/vnOCubdgWP79MjLk6mM+kcbMjJQ5dMH9vajj7I8nLQoHzLxcn+PsiyjGxHTQ1sCcpSXZUuRTPmfBE6psBnWR44ub68uuGpvCLh/Gc8rc7y7id+gM7vLy3TWnJW8ISMJnvIkeKol35PgqeCp4Cmb57o8tbMblX4Kfb5SHObh7eCdp1q1g4JI1kG78PHrW90D7TCKUv9YKybOIndX0R+19AUtB4VUlM2tT4mQrJR7kWH3/fmoPr+YgLyXXmCNFEs6Lva4WSSg9tcuuQGpJW6Amlre0eVjoV4g4PeKIAp7Hg2cGQzqUskdSHgCnnMAH5Vd0qT7DtmeJ3Ft3Kf21L1/s+19LMFTI0uCp4Kn1vMHT+3Z2pmE4ClzPAGQ+cPGcwfuImQ+Aa/5/B9LEkNoyTMXo1Fi4d9Ua3t4Tl9NhOryJi56jsDpIgnWcIOFSq/MeVRmZWeIi9vAyeeVU/bzHutJo335hi5H1ZROKuXPitEFPNSLnLxHdN2Kjxmg63N7ETh9aTz2dOTT5MjjZewx1mpZviSO/ncSShrl1UMAnwuXCGanS+rrCbHZRBjvFdjqwReS6ssiwVOzVMFTNXnwVPCUmz946lnw1MIviO/LsX2+25NUyTsSO824aovMO3e4Xv+RgVUGchss4xfJKg2R7Wh/YI8GfN8OBkiEfyTftCAvy1yMIDkzwiy/3QuL9IuLsv3uBXqc9FXNZVC3oqTi3FaL+llpOiR+HWwb9H60bBrLnpFWkugnS8b7+6Vb/SvAd6y/rB87FMTmQLiefomuHHOXTmcvYwrofw8gJfJJTZCDIP92ysMVeY3EcdkWtIF+aQQN9vG0cV8JngqeulyCp4KnoCsYPIUjPHWVh41kbDGK1HE6Zw24LEqw5xTj6w280kPe/X5QR+ktgFP+8OSJtjiLbBuRb1lEYVaf/bEjUBkTjHlIpB8wFQJyZ6l3pw7KGiBb4NJpjq1rLQ5Z/viAwPJgTybgreySPjFKMylkFGFgNGyb6eauVmT63rA9eHoT04+Vag26FqzbfJCT3gF/edOhcKzHjNb2A2BWNji25SPrDT4hMWagbJLaL/oyy0+937w8r9uonBuqDblAgqcQPDUzOXgqeMp8VxmDp6DbqJwbqq1yr4cNXSE93VTA0sm1b5Wr/1KRXSYbj8SZflCsiXyyLyuHm7NVMJfrSkcFlSTU7FKt67SFHis5nwL05ihU0BzZjV3H7WpnjUgfalCTW6c9wOp+edIBr05ntWGcsO4OogawgjN1Zki4h0WHDajaKs4NSSj5kUgqpNSAZXLTffIqy9NGjwVyxxInOjgWgtpDkJCjqKs6BSw7uD4TC8yJBMRYr1EnnfqiezVZUgtnNr2KUOZAPj7fsIkt4RIBHHvfXirBU8FTwVNGc/BU8JSbb6RP57uEpw49bFwKqvJp9D7r/45PV8qhyuYY/cztZVZ10S+CnloiEeHZUXWBPXZwwlazU1j9W5VhTtiuzpdnpHdJ3x75VdzUg/My7PU29QhIP9BNPVktW8fpQt2YUhm05YAF981IDVjaNKpKoQrm0uZkOiAnbaAicrFI0Ok1JrvRXE2oU2CvxZebjz6hLiP3IvfX5Y8ZzXVIX02T8ArA5VdGp9Mel/FZdMyilrK99a3hzF55vjtjrlkQWLvhCmkSPOVaFTxVSgieQvBU8JSXT5etzphrx3nq8MzGbKrmxXlRD9CgXSQBKtfr6RwA7+FyqLc9NBZywnANLMDpKXq1aS4iEzmChaoJqCYgl6GH1YKvc9PTr1UeR44sUO3ptNKDkFCU63+V3X7kJuU7nD0CK60AAFFSy/2ks5+LBgS9Ipe8iDxge6R2n/1gbFc6t3zaDmtUaYm82lckHkCnKKNPZdfRLtk6ODMnAP+7n6aQPLDd8+b3ZZTgqeCpa0jwFOYJgqeUXSZl/hs8BVzxnY1LXpJ75iIxi7K7OW1j4wejdYL6xZixrA2/ztSBrvLZoiBUQkBiqjBXUdZiR+OaUSTX3grnSi+LtTKsP+iBcjkRqO0cd2yVUYNWdrtODphPMGlenLoJWLQRErBsNLQqg/rmso1Jpzh57Js2krMPLJ74fT4lYxOVKv4xj7KYSE4G7+5HlDbfXh+82zm9llhWjwSBokXuTJ3mn9I55BpbwO+ftl6XgbSOPeQqEjw1luCp4KlZvuCp4Clj7SGeOvyw8cICtCOy+coxoE+2QcTmpMinvEJPRytQJXs2fT0ajZgO0zyVRqp21IENFZumUDK75ljB2a120GkG0nMAH08NKoKYF5/SQ5OavKJPcksv7VgoQ4l3M1CCPqBucGtbRD9WZeZ7BwYyR77pcOvqmHqARL207q4YHXgtF3G4/HRBE3I5t65XZhgBOHoQccpPBNRy9y/UTS3p0rCoUG9hyIoETwVPBU85Ejyl0gdPPTueuuoyKpvGTjMde6lnX2Z7k8sojcFka63TzGtG9qmcwX8B5zEM/rg6zEneB1cwo2egUSbjXMx+51GJjqTyJRiug8X+wFcv6bGI6U3bt7/o+4I5w22vlIumrWsoZCWpBfD0va2fTgRQxk4j52I31XZnsM9b+1YcGpf9dC7LAwNiPMw7O9enGdlKpniPLHs75PkKxm6Okf2afPstIC1Zj/1b68ykIK4xM3i7InC+BBI8NUsVPBU8heCp4KlnylOHHja86dn5/uP9uRUgZ5P5sihV/9SlHYC6MUYidXsJaEe9FTdPfq4frpd11IjoUwGrywCytSflT5CcfpdP/k40pQ4QUx6Z89znXt8CsI9sTdfxyoiFvEmYx9qq0Sod+V3J5osblGDUqUPy2KE2zeV3Lm7ERnxTN1XoJmuX9M2ECklXDmfxjzBomQ7Ax8X6F6ydBTdalMZL648vH89ZpE87a2jClr5VwFVgyuAGaLb+NeVjBwNFRFFQ9CZCYpd70MsnwVOOeivBUy1J8FT+CJ4Knir5rs9TV/ydDdkCi4050oWZG67qkE/i23AglbJqapIOaIY36cYkC2Tdk6PdAcRuHefU1AaCXKsHMmg4ksZC+HBXwiCz0xR+IeKgRg1XCHhGbk48r+yRn/M2LTXBQpkTIfQ/hCV5rpbH0+7rsGNo17iNmo9Z33l2t581AFa6deBndmxYAPNBT+aZ7fLRn+/PlfE3aZsajZE3KOT28TjqJMFc9omut4xyNcKTW6+SIqZcg/xbA6k9SJQVcn8JnsqlBk8heMrYU80KnhrpTnmCpy7hqXs/bPhRo/EvlK7oG52bvdjlSnE2s4VH22kc6lODlQTgAhfWtj2A4jz4yvf++p54UZCpk1rewWrUZmpEBbXuEsmn3fa3+V6aMh2HCn0/GSXvz5Fz0UbBhF0zKYPPTWsiVIOun5Vy7MeeZD/Lz2YA9xzyACJIUoCefxNwz5Ic0Dzmui2yxca+iiE1bdkNpeCX+TEm6TcduJc0EoP0jRmptNZvyTnXStb/5FHIpRI8NZPgqeApoSF4al5S8NRFPDV92KhTtbtglVM/sEcdnpJVkjqqvKSvnuxl4tpB17XnEumn6Pb7YcUmAsS2c1bnA9WJRzG7kZQfh9HApcXGZ2bts3NNAeKoTfIeI2mPP90fsnJmBI/q3Qb4SsvY3SFKfe1Cg5Wx6utdSSsMUOesDnksI6gVmrr03H0f6dQvuo3s9ytVesS5VRTf802ejP5g2xka44s2smXt1VPvwmd4Vr+QIsFT17PnEgmeAoKnWgHBU+168FST+cMGcf2lxRYAEK4utpG7Bp55kSF7bZbPSnsJKetzxhypI5MIdlCYHT7ccvsfT7qmXIs45DTY9e1IjlfjcnSJ3f1Tt7yGols95dtv5PSvFUsEXgpnT/BiVNfXIqpJGA6MFl3Ys292X8EKjrqdN2Y6OY3qma9q0x3Ym0R3tQ7ZRx6Au6W7pSawE/ou8F82X+RtQm8fCSDh2m8yIs4GbEuaRjYj3S1/iv7l+JAkqM6+ECvBU8FTl9kRPAUETzUdwVO+7pb/Pjy1P7NBVH8D5tI39F3dF0RDLhHl1oWNxNSpb/7YFrcNpjkul0vaZJ4nD4zmk8luagAgh447JV0PS8uKaduiLCdMp+SrRL09e+6j29uSrZe5/M5qn0PmqTTA6Os4t0jvpGEHPMvTxdmkNb3de7vVaP8qP/iVhnbVNqmCvTla21Wj+couyZg0PXDnmlTiOoYZtX86UkwA63GlWjZhr8FZJkAE8DbxR3NzJ0C95Wl17Os6fj+gwHUB8nRe2D7EqRAgeMqT4KlaEoKnbAHBU/1x8JS+Zup2BZ6aPmyccWpKbJXuAboPPa1by8mfa8/le8q4BD+a3uwoay1x+frgS2W+XliA2cJAbYlt2E0A1UzF8bFroirWRtu7+tPrc/Ui3TFLujM00OTr7uuwEmlllhbLlz4zrNcXENdoaLbWdGltuacr+/+WfUhHVBeMGun3vskonQBR165OBFHWTxZuOxib9XpuaxH9rACcWb2SF/e3dR4ZdhG+qkfoZ84Af+Anbl8yCZ6SyoKngqeaBE8FT70oPDV92NiwgeqaRPsUxmZ6+v7odI2okepo05AEqE5b9HzxPeup86b3MPSBxY/u1W9D4NYQOBZSoCIvJN1UGM8UU7tnqaslUNvoi7Z42hk5pECdvlUbmk+Vgb+X26UeQUr74MOTo6xD1mcw/jw/GE/792JfgOwjvck46sabBaz+vB+Nyu3NQImipLPt3KAIX29No9llQy1GfpngWLJL4p+UrWwtWZbM8jhvs0dEqFhHjGo+Zmwbi+0FQ6wETyF4aiDBU3MJngqeGuVt9lyHp5Z2o5Lgeg3Qvny3g+tIHtNraV1b2xToel0Wo0WMdXxZEHddcXagC7RpLYt1P9Levowyr5BNr6Hm6gbNvh0Vq5xs/SCtFxas8sWLBumX1Nb07JYzYNVRv1FtA1JrfrU99nPuB+1aa2DV1OXAqXNZ21sSyUhb7WVTuArYTH1hBOCGWCRJq7yexkYcG3OODJnrxcbVG86XXIKngqeyNq0leEpfDZ4KnnoOPHXx1rcSzI9EemYv19k0e+mmdi3onooA0wpWpC9PC7pU7g3gPgv0a0oHSGRsIaaaVL+op0cAcxnY4jwbZeDFSJHMI2225/al1bvvvGMADjWWVOuNojW2XCHDHRZbirbmVTjbwwW45UtlS8nTB3skIxKMsps0Ehhb0JcAuaTDunB3SkaYZFRTV+jI2FWAjRLVycfFztoWUOWD66t0feyay0t27eU6bRJhw4YT0sAqe9eHHJPgKfvlShI8ZfJIm+25fQmeWpXgKd/OF5+npg8ba1sJrgPjXrprRob2IGo32mGqrl6O6pK2Thk32bNaC5sMmEX2GtZaYx3jbJLasHWkoS7Tq/xBWp0M0SwKd7bJHu3tXmvX+4fiVNDC1MdvaXSI3e+E0efkwflOe+7HdULaayvGVuZuF/L7lisLUV/qZKjPdE3mkYobuCVwFiBvyirjrkZ0ZNTGhCsLrB4ZiLIf6s+u5T/EGryrhSwIjvLQKDdFtSosayAVNB8ruh9y66D3uARP6fRFgqdE2uApYcWgvOApkS946to8Nd+NqjR6smMZ1EdyafTHO7c6LXpfG1b1Hsfm2Y8oTXIZ8jk61V/KdgfOThbK3sikPDa1aYkEwuufUp6l1jGx+RGV67R8xdZSn0t0eMV3dw6V1cbZXQDf9wkyn/e9N1h3oXGftXOjRvF8wKbN+guS1STah1RgUoRpvGpUNaNg5pJk/zZlztqtArSodiMRaUOuk8hnbw94e/C7v/esBE+t6w2eCp4KnqrfVPrgqWb+Q/DUwsNGeTJ99pE1/+Wx50e6/UtHPqHsRavGshpVWvdGCfLyhau2f7kcHE2hepKnDM0O4FVLFpcbPGu5jOSG2gC0qcYynZuPTCqI8+O28ewrkSB52vbSZTICX+vX66Be0kp/SXXydS9oNJ8sQpy2rPVIGZfMwiY99Y/2nXq7WY4TFj4AVtHNptuxgQDvN5f6aJjQV8dgPGyMJHhqXnbwVPBU8FTw1PPmqZ13NmyDXluaWz7PgX6puIMvV2kE5G2AeANqLXpE+W//ZClSKAYu9tpUBFB+SYltXpHYAW91bolTxAhZGHh7U6ir7nIfv5I8psdCap9E4tl/Yfc98eu7MjVd427mx6zclvP65p7CrIG4lWrrtEcK/dhm41uaxKjq5DzlrpYpqDflSj4Fp0pHVylRh2k/SF9WtstPMuc0bWu/YcgdAft16YUMSl8WpRuAE0AbLntR9mWR4KmZBE8FTwVPefmDp54lT+28s1HdaSqXPpWzru2SXDcC4MtQOw2hWZ0fW5cjDgeeyC+TI8qpPZBX4CfhiSugKwah06d6Czur64j+kt5G1jRoHBKC/6NQJlGJmrYqlLI2JAgvytIgbbU6Rl7IeZb9I6tdasVBAj/y2UfC7M3HLCrEyn90vrF9G2QfFnpsNwuU+kr6as3bQJrZq4+szspNhPAIBdAeCayPN+mzIxWtXQlgSoTWrQ0PKRI81RU+uBo8VXQFTwVPybTBU1av0HQlnpo+bJzky2aiUnY96TVAdQbOD/arrY7zKgvI656e1rpdSYbtcaUX72ihzStwjm2xyVmM20w36IBZBE76da8aTfpuY7Q2WNlNQnt5BcXSxsLeBBcSNIoN1yF9BkCct1EUIKIxwbYpqfzLUS5Zpnf9QH00uEttIxC04832cd59hFdvRuYJ9C4aNj2bdrNUa9jE1SvyyiK41yZLqS/PmdK0las/lNbbzEq3jBMJEiNG+eXZi25QXhIJngqeCp5qlgRPpePgqReLpw5vfVs6+Fr7mNvjtm7z+ZCrAjO8mBR/LVAymGuviq8komUrZTdHBXxQaFGkdX0tuwHw+jbUsd66JGLJ4s9qP9ynu2TW0a/Btut9nv6qp9kpVwInb9DkKwG9Uc28PY7tcqPWqQpc0OtXS3v0USm1tagtdNBQilBYEC+Z9a7KTue78Cu/TTR86ySll8sLeqnu78XlO89TgqeevwRPBU95Ejz1cvLU8sPGQ0SJZjJ+gr1eFMDTz+Lvqk0q/zWiRW2MPJwUIKondPilGydyrJSU3OeuqgfpAC+SpK6a706jyfYpkatB2476g7v696W7xRYwcdTaGxu9VtM3f1qWd47yHy9KUr8srI7lE0rHdnEYYbedipZ+7IGL3y7p/Ig09dQyMmCSsUzeQGiL822fKlu2RV9giYeKMlQ6QVTM2BQo6zLLgbWIu3OyCEJd58w+rrLwM+ZTPGwsSvBU8FTwVM0YPIXgqReFp+YPG/MH1HnWpakrLe81QrWgfhX7d1Rct41WOpixuxOOuXzk12pH58iwQoGVudrjrHfcxWepx5RwtN9GkTxmfWHcgnuiCbjCYwVwCeR6yrSvypgEmmziusynQWvPVoOiilDqaVfX0YhVBngFZB6BG/hm7yxMmkYBiqZqMRuI22uEhdJCBhI8NZXgqZZEaQ2eEtrzleApcV3mC56yeY/y1OGZjecBtM8yOpVe7pGNXr7dJ2K24zzV58cTjJe92DjJU0euUyahzgJ31uhkLfKSz1+2rKANDi//es1lyoEd3H1xU47BoFz1+mhc/yOT+zYPJEBJ+2zhU/1juGe0fmzn7e4bhVg1oJXr/kt7xTR29FspcJWuqyhSJoAu96QxZ77Pst4psY33dOSwL2UAAB3TKrv8793JsqMJ3+te+qWT4KngKSdZ8JQ8Gzyl0jfTgqeaXf737uQBntp/2BAajuDIJbjrrYV9pgAO+6ws6lGmQdNZAe1kErZz80lC0hGQB62mrFG2i/1rnqhfnlX9k595je2XEY61eM56BRMaaO7XA0A/IpwRsmc/V/Jj6Nei9BRpZ06aa8zXxrZKk8r+IxJwXJvmFk/BY6+7pKnMJwDbJM8IwNM15m3SvmVatx5lgjFttTXvOORr3Hx/gwVu55vR7ReVp5olSJIkYK2zHUkqEfWrO+yYMnCaVCwkeKpdCJ5C8FS1NXhqkNroDp56aJ7a3fq2KjZnj704tS57615n4D6aFnWjEAKMZnXwIxh6p48Cxino4w3OwY4W04FgyOWC6W+dxwO5YwwyenKdRYnW7PbbR4x9fX6ortRxB8wVIZecbUiVIideATZlMeZ1TWDERn+JjFBuwz6vJvl9Pz3mI/KWRd26ALC7eLQozniMFRLz0rUyWl+Xta+t1JKMc9ldSdLcSVX1NpayVo0c5Pm52LFYiEXRa6en9agEZlF6nS4Xyw7yOuAUti4n43c2ZhI8FTw1t6qVs2bDWHPwVPBU8BQu4qnDu1FVUx44kiNFOuh02mn3Sd+/LgffSr1cmFYv72kXWX26NgrROU8FD3FpIUgygd9UX8q0JBxNSSmyi+btlyzb0w7qOtD21SzpX9lrvxS492qad7UOSJcQ575DQF1XSW7FG1onYOuBAzv7rPfl+77n34BJAO+jPrZFPL3eGljd/60cVr5WomIE2TPSa3WUk0zKpqlD7XyuYqRHDKWEQdP6ETZh5WDcsErfX9+7VSg5WDJdyCEJnvJtBIKnVNbgqZYreArBU1Kuw1PTh41WdnI8PU01LfulkuqoAnjXmscOIuOA5CTl/Y5XNnmliS9UyxZ6i6OL8sl8WpNnkRL7rRzPfGheQyfyxc1CPeCdpHtlmHBDl271rVILxMg3DLDttdMWNRw5uKbPHBibPlknvRh39ii/sGfPH1J3US2n3KAtma5A1AFvCe9caKK3uYFxixfWHmftRz4QyzWzqT5q/LPOJ0tKedjkbfoLcZbpfY6JjaEET61J8FTwlF9W8NSoxOCp6/HUzsxGG80sn3QH8tDbDq5t3Xc/3ffW201RFvIbDC5vbCxMv43EgsOuVN/pvLXL3i0dgHVp/7x5k3Equ8NYo4BzSQ/HloqyO6+T7NHm18NQ6HHAvAPyPb+7l1t6dwOTYmob25uMy8dHAeiuf3MkDEDaxk/cFLD1RQPydaK3s8kn2fmQstTeEPhYlfNWjQ7R7LU8q3yp/idlU4gvwVMXKAqeslmDp7p0wVNCbfAU7sNT84eNSV73V03F9+f1Y0dHxY2s5HMX18GLKOw6wgjh15XYvpBTokkbJ/8eoa84Oau5bTMb0eitnEW5WN4rLJXXKtBH2dLRJk/VdO2FyH0ZkeHKgLZgbtfI6uleTe6Z79OApjQRq5YluPZ5pTdb9drTsZ7aVjW9tVvW38Cp6MD5NH3pA1subFdidLRXhmtiyjTIL36GyrrarBzWaabroB2Til+UIUogQGx7qOHnXiz+/pbgqcuUBk8ZCZ4Knioag6dqqVfiqYXf2ShPc/4Iu+YPF11KAns23Ocpd8kOKk1c1pT2AM6Dp9huzeuwuNKzFakGT8uj7i6OptFWu/JcZoS328KjcMpFUgBcKjbXVJQqnbvQC/Rn7S4Vi+pzOYDht5+TOU/dgrn96iyONF1HI9BtVuwxuagHN2t3GmtSx9q4o4xUenNAlbq1tLgBSetAh0V0NyrTpQmOXZJEbZ+t4Maob+v08qG8fkScCKDTe+Om+LlI8FTwlNQQPBU8FTzl6nqePLW09e3eC03XANzZk+yu/tLpJT1MP06QyrPneKQol1j9ZxQxcvSW8+4PEg1coI5Fr4yCAaT1855LlZzrUOEDuIyAiCfxEYpzAVc9+EyPLNtS09tiFtcQVw3dDinCkgpk7WrrkmNU0UWT9B/7sSjSolpS1eJHfRwtLpDxJF8rt2s5Hi0MKPEw3T/1BoVbAxxpgxmeaHv1dUlQl77wK0zW7TCLLHG+Lv2KW9nXulF+30rw1IIET0kjgqfWJXgqeKolvoynLt6NyhMPDNca8zpCaFgosbG4x4OVLMpohXiRjImCpWJW0hXwtohIJk0acMpKXYFec+7PeR9asJRk4l0fnHciF0bRjhwj4pXp3utK+6VQddPASFGiSTXn7d9gY34z4t1Izey9YOxWVyzw3dF9qq8EawAgSr9MWqKpnV+OwZCcmxUZEZI0sUpmI/GbQxJ+sn8XwN3cqPciBd9DriPBU7KQ4Cltz+j64Hzw1FCCp4KnpFz1YaMz6ECnz16qm0WP6tGgqBXwxUkGtwAAIABJREFUvs4UuwChDo8WBl2XRDjAsgkyUqKnEZtOdABZ1l0m0htHVko91BaMphrJddv+3gWk2LNDZxTnGWPw9M/7NwxW/6ViylQEadpBnFewo6JCZUD31zo1Ax3D9GX/awN6x9tiL8LWbgQGlmjs9dQJAGepizXwWcvT6U3obH4zqqbEAT0NLT89YttvszTscj2cF0JFwX5+yPEhSSD59QnkvWcaciUJnso2BE8FTwVPBU89EE8tvSBed0wYPIE+yyl+9ymxXMPY7RS+LeicG6E+BIDY6IjUPQKxySAYAHs7KlOB0hM98J6JyEvcvZTXImFaX9kaTzcG5fL14PbWhdapv0UrpzV4Bv7XlTEoc4+wmWWd/Z1f1uujlwJ4n9L/el/0+sj3n/WIGmO85aLwVxajtYZ0PZT3ypT1cKbdhQ8z0q+w7ssYwP3lNDKnUxeRptDq5jBZrzulaS/joUXOQnwJnhpkUB/BU/UjeCp4KnjqWfPUwsyGHpDPQma/pOqfJwXk1lyqF/prz1SUkddTIp84+YL+yjtq+4DSJTbRHtZRqmctM8BLpkqgAkaNfyhqeJg0GhhoED+men/bS93+LIBSft/PY21qxDvWI29iWLkE5b3AfWxnoZMaHNqbBpibhvrV3ByJ9h3WmPoyxv3P+ruNBtsSuPuSiyGA2N1ds4B1tc3WgRG/s7ErwVNXk+Cpq0vwlEphdAVPvQw8dWgZ1XN5Mt9Lj9SQqRHGIDLTenTf9cta4Uh00gfUuT5yz/pZ9Wji7GCjp3M2x3661oZ2QEjaketpn+W2kzMAn/b3IFKk8kzqUQCqDsYla2e6dlOJT+tHJXYx1jNbGjIGubUbhzn5rHhuacBRVKyp2SY2iR6RvGOiPUanpYTq1FtTKsvw9Ahy6z8bQZTJ+lrOya1GyECCp/Z1TUo5kDN46toSPAUET0mL3z88tfOw8TzDK2uSur9Me/kJZq5hHesosLRp2jWpYGIw4DJ+JPXt4MpZVCNKZMXsNNI7csnVk8cwH8wQF9GHh5YRcM8AvaUxflHO24QEpP3SHR/Uc5gA9fvl6CnQMZD5AJhe3ivXdRoLEy2P5R9pg1rnPAVdvb5Wr/XVZujX3ZDbJUfPuKUpPkEV7GR7WJ8iABuYS9uLHqrDyyMgFv+Q7chtr5DTVMIFcJYfQh+GUqNvOoe6xtY2Pj6yXy4JntotP3iq1xo8JQtqGYOngqcegKemDxsqKzewfAhs7xxG7kk8G/h5rkkNsqJqOPIwrMPK1F9nxqCR+/WTvj3XCMTNogkuURHQFr4eM6D2A6/bXgZvbYJnEH28VNwpWnPcyLu8AJaBoHx3qqcgaTcSM7dnkFLkacepv/ypZQ+w24/4eFO2rPR4ANbWZvflKLcDD9uktalvIxRpNQJk7te+FoJjlmM3kUD97gK4AeQZ7rljuoFy14oGo1QbqGbIL69Oin7ZJXjKzxA8FTwVPBU8pQsxh8+Qp6YPGxvatO+1cXvXMbl3hD3Rza8vyGCI6pfd9YXWLD/d+FlfpyrBGWnNffGsOTmWrGhppTEXGiEqfg1gvm8/NHCZ9chxO0dTs7rJM7iZJu2wSekd27XfFtJ3LIC30uSxS1DLhLJHNqVF7F2Uzl9XblM+5zdthcDOxqKdcj8zQ/4MU9/1+u6pa38zFtw2UuAi9Xigr23VPCB21ZFlcbveaDClZWJsL+49z3OX4CnPrOApJcFTwVOi3OApXcKz4Knpw8apGklLUSL71GnPrUgpxoIuC13ySTZVmeozYzsHNZ7SYWt8S0uX2juTa/5qrZUjevf3sX5GdzJlX2rPiqsQwH3yXgLs3lmaXXQA/DqEMjZ/PnBH9Z6RpFxOQRaMJvXh2jZ5LG76ZTqpw4Jb04Fc+FbLt0TWXtIrOjNKkGTXOZn1ZRpjqn2yfTVpepPs5bi0gfsiHp0g2+AFDq6+EBI8dT8JnuoMCZ7q8gdPBU+Z8g7y1PRhw4sTlWmrhxLpCqMmt0+PZMZNudo9nTs69teh3qOu3P/epHx6Lz+WM1ehifFapKB0yQZbED1N6JGfmPaTZaJ3WN0ma2X2L0rC0XwUnPbLNQXWYmrzKUe0Pd/yPrt7xwIC+/HM9XbRv1hbXWjQB+rmC8DG3A84OQi79rFAqNGAMwCom4Ma0Wl+YnfPkP3mi++XLDOWveK5TED3jCOGe7kTzSbq6FIinpyohLG4rIW97s3l+02Cp4qWCyV4SpcJONgQPPVwEjxli3g/8tRFL4iP1qZeFdxJtNXA/q48c2izUTc9NwLFy+rhT8bp4Xz5S3YL5T+g7rFYurXXiozaVL48dl3LlCXXUC6AgvKxm6z8tWP6agQ8bqs1Qhv799xGQ0wqKXdfR63DArj8Mi36bdDQLv0lg5xTmrT2SNOPliK45K1uKNfuhkb65brXS6OJL6cETx2R4KngKSB4Knjq2fLU/AXxAVg/lMyiAqP0w3Rsp6az3nK2DgSa63FsW7FrfK1ZdE3QGnW614cMm7Y8qeq8asjy4HzxODKJlBHSxmOyt3YTKKC2HxW5REZala+2k/W8R+Cd7ondaz60n9bPf3k76YgngcXG2j3MOuWKKKWMvtSIC3EOOFb4Ncq46YLIW4FcxrnzC3eyfK3FHK/7kBxuS+0pomyjhfkyCUoEiZdNemkleMq3bcWu8bVmUfDUvgRPeWWvp/XzB0+9n3hq6Xc2JMiNpkhnUaSVgbgqVl8/oLOdNp8sW1sy2376kKzU6SjUrLbnKIqQ0isrxce+hxRsNq0sYkTeHgaO9BwxT77oH5IUj8ru1H/xaVHCKDZW2t/2gwsgA8K16favrS9v8P1mFLHZk3G+8lJZW+PZ/rq7fxT/Ea44auPiRKwOlWYBrrrv+qKduxKzMNVGl1W2zu8Y5u08pbrWVpTRZqy1UnkDkDdosbt9hjgSPLUmwVMTCZ4yaoOnSvrgqfvx1PKP+lkgX0lX5L4vtV2irzyIl5yeY7Qn9verlAGsz6amGQO4dHy25zrtYwJRaccjcyrXWv8785lLIqJentYOdg30/aVGonbaQvv0LG1v/2XtXPbs8GrcUz875yVZui1nA5pcwHzNXqvRs6Ej3071aARUBlD935Xf3TTt+ZxDTiG7Ejz1XpTgKakHCJ4SKYdlHJPgqefNUzu/s5EBoDxt7T1hQ6d7yF0uiv55gr4zemucp8JBWfepy4UYtq9X2iU7y4K0LXiCytV1BkikXj7K5U5fIlQRBEfbpFHGbT4fDHLqtwLrwF/uN107A64CNteQDHHDCKwte0/Xmuy1TSGMBrAwxwWgE9inLiAHhOX2jHqa3wVrAogbgTT/K2TXWaoiN9K597vfS8cmhTkWDSLzFaJi5x5K9aEdYgf67GWT4CldVvCUuB48NcgbPKWPg6cemqfmDxtUGigXP5kWvraM1qdSq6Pyxb11tN0kqmv+GIWuWd/7RBOsHS2SAKGV+/ksJ2oENk/w5PTrgH3Y8kUdpr2dl0Zk+puGVJi2cXQjIa+VNhr4ryJBc87VPbvW0lzSx7Np5Kz5sD4prV28iNe6n8spVeVDBabkOOUy/iQyFXgWaJZDKxYedXnSYAnkOr2tHyFtkdrZU+sjs3ttNjpm9a9eSgMspa2NIde3at8c1nVj8MZpd5QQV4KnqsbgqeApP69bbvBU8FS69ix4ancZlXyZ5WjU5KGBflVWojW+rSnnKgbtT5uTw0IP0UbW4EEZJMGc8yk7KLRKNzolks8iQ75tY7nGC58ecBOR8uUCaZdDpR/1GvXufV8UvM5e+z6QH9JQo0ENHCE+ubQqcQatkpLzadbexo0QNDFAN2aZB2b4vgrA7hyzdM+2sFRlGJlj4UG1viJtZY9yM6L7X0WVKP8eA3OOxsa8xp4ETwVPSZXBU24pwVNFpfgMnhJpH5Cnlt/Z6J/kkArAZc60t562fHZPvPBdT+1i4UabLhk0rbRLp6f7HD0xNLVre5p7UqN6nls7+DmsCxXK7kVFcITa5LROe1eSkLnWxI84NRAeDqaJjF5irKC4aKXW0/rLXWc7sLIjDJW35Vr1hRkxcNf+A5r17F/1ex4dFtIvBM9oO4N4elkEbXJ9WK+Q9WuZCuhuIrjdnmT6qMdK06SKep2sTMgVkOuLlyjkIuzq+nJcmPQFBnLkkad5QoQETwVPBU85eoKnPJXBU8KuB+ap9YcNWzwlg68dFFpxmFkKd51g/qSMKnsvX7XrVMH2OgDezvrq9ttzb1CxPZJPsvX0wbqI5MP1pGKwig8hdPH9kv8y5xi0jogXfbn8BVG/aY9EotrwNSCjNBUy0+XttwkNbUz5e9862hal9GLppq5ahDWZvJaqBNnb5EWL9M90UW4UoUi0sClcm0SSnHsbdqVORW/Tm6dyM2L7ru18kpZjvCjR9/eKBE+tS/CUlOApIHgqeOr6PHX4YcMaMHq6vsZLdy5gDAqcRUD0ukdtmx0EfbkHohyD79eWfn2jdEmq3zo3v4SIJnmW+5jQnEXeBcyyGN0PdbPV6R2Us2ZLI/1Rnq5ekzLT4LbtoHKa8166BvwyElts0TrW2nhUl1oiUQWhutxB4TehrhXuxqH1X//Gxq6HLocnpPsWLjpzu7T/5A1HohsW+6UriK/hJ7stpyxf29e+b2jRKuHtagzYussboZSQiHAiwnYAh0K0BE8ZGwbfry3BU9eT4Cnf3pkET71YPLWzGxVXUNjvXv3kdflT93VIlXn8BL9u22W28Ozoili0Xw8dYejPe9fa6cteHXNUKaYcF/nc5aLO6fPMgLkDcFdDOeuNKR7mSCJfUGx6iPqGHxHTpctNmLXHcNbl8443MJvPlTZU+mrops/X0sgWKn8bfLf4KYsyvPEwawNpY2lhb9Q3ezPt6TSKuNh869OH+BI8FTx1DQmekkUETzkH9VTw1HGe2pnZYMxeRjEmLRW4J6On2XVZzTcCuHZt+Qnafqs9YY+vJyPbysBta2Ol2OOxUccA3FZwZ5o9R5DqjgejZFeIOlpZ1aejijy81gEtnCpdXIW21rJpHgOxFmlXIYRBKfdo4+FLgIa3y7cGq6goVv8S6npZMmkGlkPhej0QsEztWA7J+p3JGZ6S0PrzKkKUM9t0BIDFXWRPZJbutKR3917Uu50XTYKnViR4Kniq6odTpeCp+i14qi/jvjw1fdg44+QWQeXkDjitDMJy+b6BouZM6mxe02YBm7p8DyrVJv/Futn6xE7VFLxbYXa60srwh2sWy/bXpq4oWS5u6jt79btI5KAbAPggo7JllbPX0rm0sJM+9Y19QXAp91VIcxDpyUAtPkqCRRP1OHajwZMTZbY5/Us04RepiamPpuUxXJu32c9aReoDN0pYGIsFoDZykU3CBwD9ZZTgqStJ8JRQslxc8FSyYFGbTB885Z14v/LUaXglG1xsbdM6+25VtmyrlViQBuZ0L2At+ZuOcpy+H9V1kQ3AoDwvkpKmE6/DJUl5V3btPIbqPSasbKNW1ThGynaWBXZJa7HNm1o7XVb2JVL9A+j+HdIDIPVn2lt6ij9U7PdLmdVNXiO6dHyYfp+Zes/x1xTlkoXvJUBybgRm5XXrdauX+//Yu9bKz19FOqG76K3NZfJXUO/NbK0r0ZeqDrlzTrJkS4ko/1NGFKJIaB67Uc0leCp4SlkaPNX0AAieminKJQdP4aF5av8XxEfZnQt1PdwkstAyl+u2xEvFdnYBtDzc7KPcgtzv6bk0kCzvoW8YUpldNIWhHeUe9vi7oSxldIrTTrS3NEFGIAtR2UjZrjhP7941r8xel9ZRBvGhlt4jAMcGbY+8tdIlumBz0KfnUTv/mlt/ArDNy24tIWyX07sdiFLLZ/pCYmnLw5oEVAaqU+PJr/bbqesFxyeZG0iz7CtnjLL8HBUU0knwVPBUV0LwlEgfPOWe984FTz0YT80fNioGmS3dWBbWnvzXneYhwOxFYORCGLmBvBSDdrp3ybV7yp7c0A7BJPiEAdabr1l7h2scXdlZ+1rLmEfQZm1zrWUkMzDdK7M73kkPiNZVIzQP6p3IjKfv2EujDRRTW/fl3feFuz6PQc9ywCZiI5K0WVoCYxNTswW0LVWaKFBt25JxM+Qq02kbErwx7OVx/crYYNOnA/+QgVv5A055rlz1SbU/6V8JqIUETx2X4KmBdebTzxc8ta8veCp4ysr+L4hz29aM3Kd+Xb4wGcPEz0DkFO3MOa/6ctfu03/rHBY97O3A4Ktfs1Pry4TiOELqzjHhNF0rztxdVc63ZrozrZ1y1+ta377Svf6tLXWQXb11lHPiy4NWRQnG5a33dUk/86Eyzepf3xsfh2xiWVJacZrCNJLA8ncRASpbD9b1qlObbFTUA3l5Tt5EsEpa9viYjwJJdO1Y/n6DJRpvXLGylxyLni9mvpcleOqABE/Jq8FTJkfwVE4QPFVtugZPTR82SNau00/ib3/+2cnlZOEN8EsAXVvAjjnSrdMhEXCp3bWcY4YV1Na27OjxXj46Snz7SY/qWkt/dIpxmuY+RF8G+sBVqU/aqxiU304/3A3TfW5yEijLqOQIsuTOHgt6zQusKvKlR2MbdAV8eTAChjdhflRVZPPOzqxPMMEGF5wbg3LtIaLM7xcJnrrEguCpXsduioO6gqfa+b2c95fgqRebp+YzGwLA9TSbMJK8LbmKqQ8TNdIV4opNbTAUkFkDqGsa5dfYuAzDvO/mReLsCdoHT9L904JmJaxg9V5W/4vbjdB5Y4t4GDLtypwPpD279mymbIxdyz22Z62cSz1sfYech70LHZPHSlvb5QdpirzeGKjR0m4w0nhuzlyiSSUKs+5+ZcIbAG86nwJ9uADu38A08PWjViU6d0L6wSRNW6xOKBaSZmeQX63nSy7BU4eNCp6aSPDUsgRPBU+t1nP3BfES3aj67AwPcxuJaBX2ghVKt6mIndrzXr4aD5ym6b7rm4+tAS3lq5rqNW/qSk7faxCGs5egz+UpYy+BX+JRmU1T2nqO246NY5D2K6uUgLpLwrHZ44vkOmtBnTTywJmz1/ck+y/iSVU9oBT/9W0cLTPYW3e7uy7YPS6gOyDGDsPENLqNALGTJ5/Q2GztoKJBC8nIkbVrfKNjgb39tYMgFWJvOEtVvNHZIDHbm3eGScTnGBoCIHhqVYKnYI6Dp1QaeRA8JdLY78FTkHVa5KnddzZaSSIeQ7YDXFjShnLLq1P5esaD454o/Uwk2ejtVd6l9EjDq+IQ2EtH6wRlLTCB87SoGAjl76SJZ4PUtdl2+Ez68OODywioRibXgXUPG+2NimNU0p8HLZH9fc8V/R0EmDT3b+NLbmgKRng4odU5cCa4vlSRoYmgAHhVyAWqy5gjo7bdPXT16dmkZvSr7uMdZPms69X0kBh6re/qTLW4I2UwNmzIMa+QFQmeOiDBU1MJnipGBU8FT+G+PLXwsNFPna72aUnmgXmX9p7O1qY5ZcmeNdIi79wzkgx6+1OQ5noJ33XZdIyOGajbCHpgMnNOiQs29OfZVIq/SFaI+whD2KyCfKbJnIE5safEIZzmOWCauLMZRFXGtqGWbCMc7XitzY7VfS3d3vIQSXCa7NpEdAE1Nwq9a5++KaIaWZJEwIowbPRppLOtYdXk0aedeYcpi+W5rJG3FC3KcB4yk+CpB5Hgqc6Q4KngqeCp9rnKUzsPG2Q+L5MxVF4yBMYDen3qbQ7y/ZN+N9m+ZGmZVtWOKn42pTjAQJ1fn+Z8o4zJ2hLWK862D2Z90Iqqc1XSWbBxJF3Uyev+2r0EjQNldxTfZ64RGbEy9J2CvdJcx6q1HTiOi46s2mue/16m+/I0HuC0yKY/HgtAogErS5Adk32KtDGIc8St7FHogjKLfssAuQPeOlJVCKaM2w2ynbWevYixWU8rPuwuMtf37veTBE9lLZjVYizBU6O0wVOXS/BU8JSUtWVUAsu8acrL5VLH7oH8uoPYdkr1pNVncA3aRIOp6mM27/3wlNLa/TiSAE0FAnNykpfZINbI9UfrZiUo9lOEQJ3SKwQlHbzacl2wvtxvdH9eosX+uNjKrjOzKBbndkt6AB9MHb8YaVxom9bXoxfR/DxyrawEcWtbGTcjGixlKj9Dguq6LGOhLj0hsyFEKVthGU0uxaDJDZZICXCmkYlpyT82bFvMbOxK8FTwVPkePFVyBk8heOpF4KmdF8S5PlUVDNC17cHUNdY5k39iyU2zL2Mw6yM0l8tlKnyw9uxhET3yALF72az4x4Jh7VcmjyBN6U/ZLxMdDv5fh0yP3xxcsg+9TX2QUsvIyEeOvnqCxfG4lNla8PnUvfavMk4bCK3VbF7GKE+zwfpKA1hhW70RtMBtf32WdmwStvn437Cy6DBJu8gTPFUSpEuD6vGwokVlyARQxnfnu2xsI2rhx5BOgqcuyxU8dV8JngqeCp5qKuc8tTOzwc0uObBWplNrGhanRuA7G07HBrTul/28u1EctWNHnbTN51YGx5hQptbV8lifEnYMFeaE1OX1iMKC3+i7KZVNCu5pSEZC5PFY9m4KnBxd5OkYYHmpJ5BV1achoVlW9ZYLnpeD6TyaRK2vq32yfrJN18bWeH1sI/rRso8U5ZBlMbxfhR2XJ28k9BiQLu4B7rz7V/yQG84651O1aui1GdNFsI1We4L6cwzZxpJ8GLQdu8V4uSR4KnhqYG/wVPBU8FQz5jny1PJuVGQ+PQMNhqjMPoBL7QJwiiNeHMwTGTswJHGJRaJWw9HwljlnZZeoFbCIKb1pTqmclfkDctZWGvzvB+TSLCphCSfVcvSGRX/jlB15Uu6eshLZLP04scMFcB6s1ZTgPRHCfey/hxASUBLqS2YMb3tL4cXLEbZLIrv9zU8BWRUc6YhJ51c25HptKkmL2+mgizjIL6t63aI9ndUJ+aNK2u5MYmUdbNHvNJEus01nE/c2g1MdN4WFSfHFUPiSSfBU8JQ1K3iql+Cpql2UGzzVSrg+T+3/qB/lJ37VGXOhumsBAKIUdKlZRzokBcycps8/S80qlXOdRO9WRZIEdJRI65zJEcef1NV7cq/ptwSkOaJXnZBWohf5kgqBtGRHpnqb83NlE7tud+mFruUSm+holB6SIo4ytGNlGnjUk0enwy+ZQrf55+Vabyew7dhpfl1WN31LhPWXCO1424S+vq+k9OadTB5q/qbGaxkDPVKL4Jrw8VZ2Nz0sb/EmzV1ecJ2hVat1q0P9Vm74GAC2un43YfczvhF4r0rwVPDUkvXBU6u2Bk8VW4KnrsVTuzMbbYpEd577Elg9xeLJvZ2qaUaVLjpNhOmSCJIsoegaNnWnd9J4fvBpAH6jF+52Shvo0mmN40sglVcnAD614wAHlVWhR/ff1mWtde44GtM/VY+mCPuXtOD65Mwid4DxxMfcPM03pI8rAJ1G5HQkpl7L7cnofW+JTHeJzWuZMfD0a3xbP8iIUsvP9bjLU1KXCJk+W/uTq4J0zV25PPBxljqq3e2KihyVfhi0qyau7qLyPS5t4uiJ18PnEjzlpA2eUhI8VU0IngqeGtT94XjqwO9saEBh5g6l69NkbmV3EEydyEKUfdodD6tUstMrZAaWvWyfjC0wex29DHArAG5H2b7O9m8wBdtjRcbJXDl3oEEHygDX10nYnMaIGFyMur36spi21E/x7bvcTWIkpgrw2t8HX31uj04uiX754FY+yaTr06rIgwC+NBbHhDW0TxLZYPeVkQ4vTfsEPHKyAK/r4L+s2mQT1wvwSU8U1xRmUv1eUyr7LCiLemQb242jIYCuzv35lkv3qSQBPRndMpVlEswM1rsWhrgSPBU8FTy1q8OxZS9P8FTw1DV4amkZlX9hcr68oT/KPsytiaLGH2i8kpYsoO4V6AW6BlvgiXHSLHSqTpNfrb1MBoClfvxorWULeJc1dVKkw86K9qoj/LByvPrswFeW61nqecs+oPjihPJmqXP7HPHVUbHEhI6Yh3LK5aejEYAL9foq6zFzBLj988ccV+eTRKDbP4HRGIn6yJDUm3R746r5m/Q424aSKGw6vz4yasOmwWdkI286gM31A01ujBJZH7Y8p2F/ujemvI8leMrkCZ7qzgVPqWKDp4Knkjw7ntrd+rY8NlUYlVEFZXSJEdlndojrRvdU6isqkHv89mssTWlHmcPIeL2i04HXvgFg86Wrh55kk+e7w8UB7dbUIzIvYY4MQkQPd6c2GZXkV+xcF0nE/dXL16CyARlfZ1kv7g/cnZueWZqyrtxmKZxMx8B75Nvp2lTNZFx4ESILxJ4tXqTMj+aoorlvZZbn5Q2IY3MBzbako+VRFGKVKRN0m3U4NEhf0tbRl7+X6svIWkFdJt7t45dZgqeMPcFTTrHBU0DwVPBUZ42bvqS9Jk9NHza+7du+BQTC6XTCo0ePcL65yREawolOON/c4Hw6p6ceKj8KdMLpdALRKR0D9ZG4LXXNP+gCrtfHoM4ZI3IUijfUxywh6pBJR4E82KtRFOViQkf5bgoakIkL8gtiY2FqDe9ggBIhLY4TbzTKpcqk7OYaNVoF9oGh7iBZylsTmaxcBrIZSZeIIaUZcO2/ALfQl5ab2PEiB2w8Je7Udf6UQUvO3sF1YeSxPtXlaHDVpUmQGhEXw+rwAdzql+An18/O9Hn2tPWjkOVlROxA3uRX9eLWtlvXRu1zWj9xsyN/+9W2AYOhlvCWkCs3oK4/olXrWL6FeBI81WkOngLs0NvPWxMFT3lKgqeCp+7DU9OHje/8tm9NDbill6rOj84gOoHvksKbR49xPp/AW55+IsLNo8d4/OgVnM6n6m2nUwL8m5sbnM9nnOgEOp1BpxJtIJzOJ5xPJ5xO5/qd6IQTkSCF1lqn0wklQEV1jlSGszJwgYe7I9T4S0Emb56Ider+/GXgPZLdlwStj+ktVNJp1lOt2tF1O9Qq53acgZt1x8ult3lVunp52id1uP+vCa/LSgu5tnqEkNNHkHXiAAAgAElEQVSy9fNOz7zuMhrTFznz5QIyPsj2+uSxHn+pHl4/2PAkKXuazi3b49xgGQBXkdFBG+VsdVWqIorFcd62cTTlVBYWhOtgzIhsGWXjwiuCzPtMgqfkcfBU8NQxCZ6qJatzwVMm8z15avqwcXt7lwE6/TvfnXG+OadzG+PJkycoMEAEnE5nPLq9w9N338Xd3S1unz4FwDidziAinM5nAMCWf/iDiHC33eLu9jaB9CkB9ul0ypEqwvmcwJ/OGdRP50QE5zPO51MmhhucTyecT+es54zT6YSbmzNuHt3gdD7jdMqID+AkI045atQ2K84XxGOd13nPDgtsaCwDIBcgZOM4TWbg7Yk3lTxznuqqCyym9ew33kgn60S7egAoEnejMyv2L5Yl29xC0hE9pvBBL0hQ6gHKgpwu+1TT9pEQe5xv0hw9Dfz9m4m+KtLOvoUa0MvxV+rX6pmGKutx2pUmtNtIkdOm3j0cytQwtxTdMOl0ClsVCclM5YXJHA+ajdOdcfiyS/AUEDwVPLWaBgieGpfX6wyeug5PTR82Nt666dPz6QZMjDvcYbtLzzLnDL4gYLu7xbYRtm3L09b5PG/YbnVDnk4pMoTzGbe3t/l6+rdtbb9jSvus5W4vERXgRFTBlJmBjbFtiTReeeUVvPHGG/jghz+MV199FTePbrBx2tOaTikf8alug/fuO+/gybtPQKdEDClKRTif8zR8jXRR/jxlPXnFGgnwJ/2ACGb0M+prLNA/Q5O6wDLlCPhmUaA8+JiNrpog/5HtfIlUP5c9aMpSNnlDrCaYFrX+S7DPVpbtMUsJOvrLNxx1tOy1171E69ZRH31dRpB8UEppWQCiV04jBkm8DPCW6yvvt1iNs6pxFMGRdTB5DIVVO8XPMak6KkLJYIxsqwJdLrvxiFO5Xnbi2d5oMHOaMt+eXaTzvSbBU8FTwVPXk+Cp4CnZJtfiqf3dqLKUqa27uy0fn3A65URUEuc9kzc2nV1AGTnic8oRphPO5zMePXqMJ0+fgDfg9Tdex+uvv4btbsPt7S1ub29xd3cHzgAMSiDcbGLcbZuIUAGvvfY6XnvtdTx+5RXcPDpj41u8887TFKnK63PbtHQaMO8+eRef+p7vxZuffhPb3YbT6QRmxvnmhJvzDW7OZ5xPN6ATAKRrj195jA99+CN49bVXQadTwmrKkatTAvfz+Yybm3NtpxOdcKITsqI65d4+8+uLdaDmuqK1cZsoL22CDti085puZfudczkOoJb+Zx7iQsUcU5xw8dzOlOtkB+9Ab67vyKbuvKhYWZt9LSC/jy43EjGQ3aie+SbBRJdIIs1I59pWgj5wl89VAC9pqObzbZd6yvV2Q6fcjAffh1oJZSdwCeAWRK0dtgc1gLNuDpm0MQ3kYvVaxMwxClsRJ86OH9oYS/BU8FTp/+Cp4KngKXHuxeGp6cPGa6++hm3bUvQnA8zdXWrQNkiA7W7DhrsEkGYqsDh/0nFCAazz+VTTEXGK0pzPeO311/D6G69j2xi8bQC3tawA8prYE0CEE1H5IXYQGHd3G27v7tK09fmcgBWMu9unuNvuwEw457W1zFsqA8nOm5tH+PBHP4KbRyd8+s1P4+2330nT5k8AOp1wOhEIJ3B2/JvzDT568xHc3j7Fm2/e4smTd3F3u6U1vJlkbh7d4PHjV0AEPL19kknrBudsf6kX1e+pbU5EOOeoVUlXwD9FqU7SS0R+dJ/aL3T8jyt4+6IG4MDhtNOPdK2B9n5ka10soM/y9xGmQqrj9Y9yIlIUumvLynkvjQuM9RSJa83CS0SX54Hxlm9WSpkatRqYj4lDlObob3pY1K+8hFpuaVTrmxuDBvjcrilgzVar9al7SwBa7FZma5RULttQrh4Ttlm6Mouy0v7l3ulkE4YUCZ4Knqrfg6e0/uApUXbw1PPkqenDxs2jxzX6QyhvwN9mQG5AfXt3lwAvT1Ofz+c6tWt/iIUoGVd0tL2jUzTh029+Gp9+89O1zLQeNr2MR6e2g8jdtoGQjh89vsErH3gFj1+5wSPcgDfRNExIq19PuLu7S42SATP939b6AsCrr72Ox48/gM+89Rm8+X3fh6e3T2vjbvnJ9ebmET704Q/itQ++AZwIt0/fxd3dUzCA220DMeEmR8Vub5/ibrvF6ZTWAN/e3gLgvOb33JyT0trE7S5F3EApqHQ6UR00RKc6WcYb4/buFtvdHTi3E+VIFjOntj8l0uTiFPXlRdRdWm7ON7W/0nrlm/q9/juV8lPeOh3P6aictSL3n09N2CiD1RO0xw6YEoxJOr8u+neWRmr0ktfdF4YDfi4NBtYIy8bwJBjp7JqkjtV1D3A3NX65Y3M9ZdvGu42y9H2Q0lrbS90Kmm3iuih/RK5dOTatsKu0MzeMU0kMgbZTmrTEVbBtG5lcUc/OtLSuwfj+KCR4KngqeEpI8FTw1IvIU9OHjbvtru7wYR2vOnN+sqEcwSlTz+kf1Wne8oR5OuVI0daAnDdOgCMiUwlQUp473lLnbRtO24bzzQ0eP3oFr7zyCh6/8hg3NwkM7+7ukuPfnNJ63Lstrc3NUa7yUt+2Me7u7rBtmyAcAtENtu2MD7xyxofe+CA++MYH8T3f+z14663vx9OnT8C84ebmMV5//TU8fuUxbm+fgG+BbdtAJ8L5RLi7Y5xOAJ3zry7ylo4pTV9v2122hcTLgFttw/PNCdsdsN3dZbtTO24bA3yb1hTfbRlEN9zepen7VIcbMG94+vQpbu/uwHlJwN3tHZ48eYq7TLZ3d7e4u231f/z4UXXG0+lcI2Q3+QXHU14f/OhRXhN8vsGjm0d4/PiVtM0kKK8hPuc8p9r3ac1w9sG8JpCqV+bRIue32Q4UIyUiBjmUAORBWH2UEtl0A3ogLQqgAbwDOE+FA4L6xkVEdIYWSFuojisXX1X79NEwGa3tdcLRW8ZxAW2tp1336mdxYZ9EPJs1xVm7ii2m3hIUuYPFao+pafZ1Cbom0SZxVwKv1GvP5yqwtin9MVTM9ZvSVTLKvt+YwbyZrQ5DpARPBU8FTwVPBU+92Dw1343qrkRLcnRgS0B5d3eLEuVIEaLHIGKUNZoJIFOGurazvsh2roZvvAFbisScWAzq3CKl02gD6Aw8unmEV175AB49eoxtu8NnPvMWbm+f4o03Xsf55tymZpEIhcW047bl6Mu24UkGshbdOuF8cwLRDe7yziYEwquvvYqP0kdxOhHe/PSbwLbh1Vc/gEePbgAwnt7eAihRsjJFzHnqnTK4IkeDGngTnXE+3+B0OufOytEsJELY7oTLbBs2FvW423C33WWQTOtzmVPdkl2JKG9u71Ik7+kdNuIErnJQg3D79AmePHkHT568A8KpAiSQI0TqCZgakN/c4NGjx3j06DGKg55Opzwd/wiPHj/GiU64efQIN48f46ZsD5nJAYzaV3cbg+82PHn6FLe3T5IuyttNlpuD0yn5UI6a4UTVn055n/xE/m36kk75TkINoKKzti7kThhy2rFcr9+YKzHoyxbc2jkJQMoGqUKCbUNPfZjJrWhuN1R9GEFGHrwoUropkNcVFeYyRWRMpRnXUdo7kr1lArJMD+SJJPk0sKxeOiDcDiTb5oGokSJy8ms1og8cYO+y2r6RdDGLOMqOzrUjLkt4QxwJngqeCp5CbfvgqXEdpb0jCZ56GJ7aedi4y4NEmHFinHGqUR1w2sFDdmyJCpWdMmpDnQhbGQgnAm0pqrJtG568825+Ce9RzQcAjx49qufutg1vft+n8JnPfAbvvP02bm/vcPPoBh/92Mfw8R/4cbz66qtgZtzdpnWuW3aGFina8PY7b+PJkyc4n1PUqYBEAZjT6YTbp0/x5MlTbHcbHj1+hI9/9sfxoQ99EG99//dj2xiPHj3GzaPHdScT5PaWZZUn3G1jEG2VMM7nmwSmlKJHek1hjrKd9eBmpkyMd2BKa2wLgNxt6fGWmXB3254uiXLEB4QznXB3PuNuu8OJCE8YuOWtTvcz56lvKiSaBwsBZ8r7yZ/TVo5ySvuUYT6R4DkT6Sn5xLbhFrfJ/nNp3/TDWndP7/Duu+/g7bc+g8+8/TaePnkXt7dPwRvqzilAQlSi7CvF/5jTMojzDc43j3A+pRcbT+e8VphSdCu1Y45gnco64lNOl/Sf8rri5G+o/VXIow4rJgH8gBzVI6DEVrpUgGDu9xIVsECVkm8wmFMxon7nsh69+U0pX+rVS0OKvZuIVBpyUenk+Za2jXOd39+P3LbLmFz0cUGszVyrXuCAptzyUGYytjQa1JcEgdpeOeXL9UrFbFvQ/8/em8bqlh1nwc9aaw/vdMY7uW93p+22ux3bmRxIUBCQkA8SIBAQRrKQmEEiAn4hCJl+MAhQIBI/ECj5hxgEIVIUhgSMFCBMTgLESbDitnuwu/vevuO5Z3iHPayhvh9VtfZ+7719HRNaNMm7rOO+57zD3nutWlWrnqp6ih7558O38ZiXhiuR6u3RGsLAkAXMztt4u7GzUzs7tbNTOzu1s1Pvbjv15JoNQVNyuMsaODjAQpCMbeq/rAzNEGJmBS4CkogVUWLkIwgzRwwBPgTM54uMCLGgJfi+x3K5hO89giJVojysYXTq5OQETdPi0uVLODo6RFkWiIJCxBhEkTLNYVGUcE4fm4U6BEZtOHWUkQbrDAjM2OEKi6qs4JxD13WYTCeAdRzmFQaS4fuIed9lbowxKArhXLf8fSTXBQbkxEqxnioq3SjGWDjHBiYYnpPBOALkKTMAEBK/31qACClGwBBs4VAYx6FzM1AlGmuRwPm3pTSzAgZUkFGokpW3hJrV0Ob8WcvIUFlVKAQFy0oYzNTStwExJfRdh7Zt0fc9gvcSZh/JjRsppMShfQIABtOykWULSKAY0fU9NjEKn72Ds0548o2kLQyIluZV69xZY2ALZZ2xSJFRyBgCjJPGXWIYCEDXNPDe83cV8ppw6BsYDiESRGZcbviFDF7J2hgMqQcsBHl+de8ArNBiHApa2ciovLHVCSFIigKnJfR9z3LuCtSTCTPdyD4GNOd6WylvA1aUDyR5LR5RtMCj6ojv6e0QocejQKPXRntiW0Hq/ei7B0WuSJrB0At1ZF/106NnoNH+Gr4Nb3tfo3+b0fw8dH8PG8MtbOhhgzx65uH6j37PNl77y80K/7U5dnZqZ6d2dmpnp3Z26t1tp57obFjx/vVGOGTJT5Pye4YwcM5hFSWTUso5pxxW5d9VyekjpxSh0UQvIdMQPBepDRfP351nRMKWBIvNpkH31ltYrVe4evkyprMZqqqEMQbBc7GgohaqMJMoCsg9xMghc83RtaLAi8Kh7z3IGFZWVZU/b0x6yFOPGAuec4Bzg/JQRf/40CVYOSXtxWjzXDKik5CSQQwpC6UBBA3jebXWcRi5qkBE8F2PEDwMDKwjOCpQGnDuseEwbvQhK8AkmsU5bjRVFiXPl+G1LsoCdV2jLCtGbBwrLGsdDBjZarsObdOi7zt4VdgjY0+i7IwbwstaeKlpCyTaRZWbsdK5V+RKv2+8adV2JGF0MWZAflLSvGwpUrQGkPSARMT8LZY3zqZrkKLkScNmY3B+eob79+7h4uICXdei6zv0XZ8NdpSCT50XNZaaksHFoiwXVnKQS1cKykaMBjqHyWSC6XwOC2C1XKHpGgnXa5ieDe16tcLF+QXarkNMASkSnHVY7C1wfOkSjo6PcHh0CUdHl7C3t49JXeWwPsugyqNMIenP2yvcPN1PfvlLGpz98qi243sZ8oJHcFtW4PoBlYWxunv4FlVXknz5Fgj4WEMlan90KTW8NLz60IXexiDk7xmMVb7OyDgQMICA40ZQ8bFfuxvY2amdndrZqZ2devzY2an86v91O/VF+mzwxFlAFLV8qRlC0I8bY97xbUTlIU9Jdp4iD973EqbkwjINiY6H0TiiMdmLI4ogEGJPOLl3D5v1GpcvX8bBwYEUozmYOKAzGjp2BRfhpcjIxBBm59BlWRQoyxKMKgUQCK4sZNPylKfEnrqiQ+PnZPTEARhYNAavnOdhMBhsMEE08L+bODJcMm+yDJT4GqxkLFLifFpFpcqihDFA4QpeC+F4z6aT9POAl7CwdRaGIGiHEwVUoqxKRmQKi6oqUVVVRt1STOi6Hm3Totk0aJoGfehBcSgutDlnesiDpsTKOs+LrK0zFpY4FQGG832NMKTEGBENMouLExkkADEyy0xRlDk8nY0rhrVPMQKwsMbJ91tYVwinvEFVT2DWa/R9DyLAdz36rsXZ6QPcuvkWbt++jbMHZ2jaBokihw+F4pFTImT9IRSaIq/jwwEbGJ4bvsfEKQBWOfCBQhA8IqAXtNTKPokxIvie50RynmEMqrLCdDrDYm+B/Xt3MJ/PMZ3NcXBwiKuXr+DK1as4PDxCPZlAGWayATWqmraxiSG/HI9GtLOs5389+uITx1hx5808woTyXWAbjSJkUkF62ACoeh3/SdTjoDG3bmH8+fGzkN6X/p4PtGNN/jbPrHm7W3OWRr/QMN16CWH3GT436l5g/g9azV9tY2endnZqZ6d2dkr/urNT70o79WRnQ7/fGPlyVl6KUgBaKJaQSNEgDpXBjEMvKgy6EIwecRfXxIiRtagnE5RlCeOcbA6egUH5yXdZy+HxmJhSTw0DSyU2qw1udrewvFjj4HAf08lE8jk5zJgCF8RZVyAlgz569F0nSEmRw4rWcWjee2XS4Osz4sXP632Ptu1gjMFkMkVZFvmZIM/A/7ODZzhCTjinUdAAnWcQYvSAIVjnoOFIRrpYERYF53dq8F9DfKowNR/XWouqLJEowQebFaCmFiQpQFRBLssC9WSKqqqAxPmy9WSCouQc3pgiuqZF13Vo2wZd28ELIkfZnTY5lGyladT4eVWJ6/+scSjKkhEbAihGllmZC0rIRtKC0Z7hb4AhyXuGNuAaqBRFJLL8qYJPlBB9QN916LsO6+UKq+USFxdnOLl/H+dnD7BarbG8WGK93qBrGrQdK87c2VdkJCaWka7r4D0jhiElxMic+sOxhQ0bpYQYVUaYy78SBpWUhPZSwtgWRnKIZe8J2qdFlMr6EmNC27Q4Oz9Hug1mXCkcqrLEdDLF4eEBrl27iqtXr+Hg6BCz2UyMscvNuwZElb9/QCsHqlDnrDC/KJuLFeaXES2lGeUzQxWfwUBHOPzQAFNlJEcV5niMFbj+Rw9jDytSooEBhF9ND33/+PvwiCIfvQ2KCOVXh4RVPDy2Dqv66Xy94a/57kRR0+iz2d6MP/+obd2Nh8bOTu3s1M5O7ezUzk7JeBfaqS/qbADqVbK/E1NE8AFd2yFKyNcVEurkN8MWI/RD7mhQ8MwAosVDutOiIC9ZAYGAAAQMG1A3IxEJ3WHK7zcYEAIYIIWA5fkZ2rbBweE+jo+PYEwp19Pn4qkKMWB5cYEQPeazBfb2D1BWgogkvm9GiIbQaIyMinUtIwt1XaGqhlxQNXJKy6eLIlcW9GC06MR5rJyvaZHI5muNQ7sDKsUohHaBhZoK6/Ic5Tk2lNEh5xz/HQ6gApxIy/NvnEEgQkFccFgWBfo+oG1bdOcduq6F7/vMA8+GmiRHVgruZAPyhlaRFSFNrNBYEQ3KPReIJRqUgrWSW8rPrYqlKIqMPBljMmoUJTdbNzaHoIeNnoskPaFtGty5dxe333oLd+/cwenJCS4uztFsNmi7HjHETKdJpIiP3IfkBRMBXd+jaTp0fY8QJLfZ2q3rKZqkjxITo1a6F/i7HHwIYoCHORmUYUBRFXyoSITk4/YJiTi0bZyFE/GOoti7tsdyuca9+/fxhS+8gelshr39BQ4ODnD58mVcu3YVBwf7ef10vXSMm6UpqqUFm1ZSBpT1pa5rlFWJwhW5qddgBAaWGRJjlNFilY+RvAy6g2V7XCyY5/dxihTDgUaNOH+PKuPRThw0tRwnRn8bfyfx7sqfNI+G7x9R4A8bJxkGslZbCFjW5/mgl+0cRve2G08cOzu1s1M7O7WzUzs7JW9+l9mpJ9dsWIvggwgEC573nKMaPIee67pCUUzhbMEoBATJCTEXCakS0tzTYZNvP4jmURbOyXra4UFksTU8rQ5pZgQhIBJfz1kHA6bmazZrZpRoGly5cgWLxQLGFDknN4Qg6EeLvuvQtT26vsf+/j6qqgKBEHyQ+1aUiJW6cxaz2VTyR40Yp7iF2LBQPdzNklcoIx6Gc1kjBWionpGnmOcFEIHcosAzCDHBJC10VJSIC8/YKBA0c5lRMgsHh0QJtnAoTQ1XVPlaKSU0zQbr1RKFdbz+KWC4geGfitDl8CyJZ07iWBsRWF0jY2CIeOOLooaE3tkmDDnDOWcaQydgJyFb54bQcvamY0TyHr33IHAhoTEWPnj0bYe2abBZr3H64AHeunkTN9+6ibOzM3Rdh+A9fIhcvBY8vI/MHlIWjO6kiLKoYKzhNAVP6L1Hs2kkJcDBCHpijWx6t50XTmJDyBgpPI3wksbRdp755CllBpiiZPpGAw7vB6KMjqbEHYi1cLEsC6F7LBkVTQnBB4QU5TOqmzaw50vcvXcfZVlgbzHH9aev4/nnn8d73nNt4LEnsKLKTDmJnzEBkQBEllsuBrUoYgSIcj770AhtnMttsmykwDz81lpR+HZUxJry8wFAUZaYTCao6xoA0Hcd5713PQCCMS7PGYDM5gIRVU0DsFI8yTcGmVe54Yf+Pugcylz7gwJHVvR6QFXDomPLGAjqnT9DKrCPFtPlryCj5goZMdp5G287dnZqZ6d2dmpnp3Z26t1tp57obFR1zYqwabnwTFwa55Siz0lILSEln3NfeTPrt2yzgGghDYdzJ5jNZgghYLPZcE5pjPBJip6ylzh4ZJY0XE2yd2NWmBDPDmAEQecw+oSz01M0TZNzZIuiFP1BzN4QIshwnuHF+Tma9RqzxQJ1Xec8Rs7HZKYRzVU0AIdTzZDrqfebhV8945HhUoUeo+bCmtFnh03Av+sSm/w59YpZPjh0qWH+wmnhl4YxmfzPWoKGt1NMSDYBxNzrjCDpdwUsN2tsQkThhLLPunw/+T5HgpjvQcOxzgoP+UBHCFLkSp5BVtcYzsHd8ubBYVs1WgRCYYdQaL6mIE1qMPu2xdnJBm2zwXJ5gfPTMzw4fYAHDx7g4vwCfd8hal5qYn4IgkUIPdYNI2JVVcNYKbZMCa4sAMM53v0IMavKAm46hSKAUYyyNYIaGcrIYUiDDAVtWKVoIAjWGRgaFI33zHxjjEFhHYwflAvEgFZVBRg2WE466irC44oCBVxGulSZGcPrkFLC+cUS683LuLi4wIsvvoCnn34a08lErU1GKljhDauuyGZGjXJTLf5x1uX10ILXkXSz/BEhhSh72madFxN/rqoq1BMu8CQibNYrrFdrrDdr9F2fDYXKBhEhkqbOuDwXIEb5rJHnoQgoKimHEoKkNVgHWxTDXhSlbozkiUsjMdVKSn+pejbvz2xTaLxkw9NnRQ6Axu8a2EqAIV89I+G78dixs1M7O7WzUzs7tbNT72479URnwzmHuTQiWq83o8nTUCozZhAJqkHC3w2bPVvO8WSfS3m1nXM4PDrCM88+g0uXLqHvPR6cnOD+vfs4Oz9D17W8uMYAgoKwozZwkhtpxPRwwZsRwdHJMvIcFha+D7h75z6apsHx8TFmsxliSmi7TtCewbvzvcfF2bk0AKpgiyHszF6u5gFHQS+MhJY1rJ1gDCs+vb8xQqahZMjfmMLP5U2fvWxAPGlZZhLkxw4oDStPLvpiKr4eiSRMKArPWoNEDtAcXctFdUXJnnOKESGy0C/me6jrCk3bom06ViYQvvNx7qMInNJLaoh42NA2U/1lZE/WcYym6HyB9FmHvM8xp70TpcFzlpAS4AynEKxWKzy4fx9379zBg3snOD17gLMHD7Bcr9H1vTCnsOfvXIGiKAUd67FcrbBarwEYTKoa1rrcuZYAdG3Dm1l2PBvwEpGUtpLXx1p+1hBZkWrOdghRUD8jhqDjeRLES4sorXMonQMZIHqmCiQkBLmPKB2GjWVueldwzngIEUCf82KJCGVZoigdCmW1yVuEjQbvQy7KvH37Tj6APfPMM5jNZhiBMBlU4fWwkhIhSJBlTvuy4CZadiTrBkPOtaI3jF8mUOLDXuoDr2cCAEJVVZjOZ3DWoe87nJ2eoWk2PGdROx3brT2fUoKPAZTYMBIxraPut+D7fODJaK4NSAREQa90n5LoqpzWEKXDMWttmROTjbUreA8bCCKq6TJWEW7JB5f0CuMsSuHez8aC1BCpkjei5+TgK4Z+Nx4/dnZqZ6d2dmpnp3Z26t1tp57obGghVFXXsMaiL3v0vkffd6JMhgY7YwYHVa46EfowRWkxnUwwm88xnc0QQ0KzaTGZTfHU9eu4fOUylssl7p+c4PTBA3SNXkc2Oo19KwJiApmhKIjDgOOcSH53TAQbI1zJ4beLiwt477GYz5FSQu979iRlk1ujSpQXuaOEIjJHtys5R9NKAx3r2MPkQidmmMjIWUqMSoEV/BDmj9kwDYtssrJ71EvkOSbJWx0bBn0NBjCCxqVIiLEDFQnWTuCcRYwAiXKhlECJuLhKC66MARGnIhhrUdczTKZzxP2Avm3RtT363qP3HdquE697CD8651DVdVbsVl43blD8Kh8kfPL6My5U1DCiEbRF50SVd8x5wQQYi77rcffObbzx+uu4c+stnD44xdnZGdqmBYG4KE7yTq2wn4CApumwbhqsVms0bQvrHKaTCZx1UmSp4f6E0pVZKWtx3GqzQe8DDDiU7FwBGIIPXu0kjDCT6J4gJMTIyKs1Q1ifm2k5FKUT+ktW1HVVwRjI5iZYE0c9RZHlSH+MMcLPXyIRwfsIKgBHDgjMhFOUnMubUoKBQeEKJEp4cHKGl156GSf3T3F0fITjS0c4PDhAVZdQCES5zxMlmMg50IWxavtseQcAACAASURBVN5kfRlBlUXMqAqjVDEX6MYk4XV5mJSYSWe1XqJarwAgI8h6eFOjoTJENOTqkqDUDHYpWstIH0WROZE/pjcd0NaclU3E+kNQKyN6ANby3pHuylA9JEWsj+sTxYcbRTL5fWVZop7UmE1nqOuKUXdSdiHKypxzmLm4FYoW73yNtx07O7WzUzs7tbNTOzv17rZTT3Q26roWNCJmtoGyKlHXFfp+yF0jnQxRfKp7NK+zcA7T2RST6cAWkUJkbuamRVVXmM1nmM/nuHTlCg6Pj7FaLnH64BQPTh5gvVpJPip/sbMWZVmhLJirW8OVEKOhoeEcvpVpTRg8xhACTs/O8ndaZ4dQFBStkmcRz5LZGQrJySyFck8717IC9T4gBKYYZE7wEpnt4iHFpfe8jQ5pvjDlOcxzaYbmPzqYacEAFBFNyuwMGh4MIW6xsKjQjxEbVlDMTW5tyikGhizKukZVVqgnvN5936HZNBKm5WJJEHv6k8UCZVkKHR9l5absEEmFngbllhRlktDmuMFRNnBGjRjlz/R9j9MHD/DqKy/jzde/wDzeTYPNpkHbdiBjEBLTHaaYUDiHsjJIqccmRGzaBn0IfEip6tzcKAamXXTCBuKEatDZAj56rDYbxBDBjaQkRcEI5aHk0wJG8rHlIJCSKBJWEFmuRJFyDwCSe2VjY7GdmqD5v5ADghoaNXQqI1Zyi1OCsJ1YxBQFGWFUryrLzO0PIhSWn3W5XGK1WuH1N97AwcEerl+/jmeeuY7Do0MO2at6IpMNmi1E/kW58bVTNrZGwtjDW4Zi0qG4kRVr3/domjVCTKjrGtPZFK7ktAmbSAxBGv2wHCXVQ2A41RIAI5SV2QAp7MXPYCjr4GwUMg0gOKHDiBGCFUMADptXNXd0VrYfRjvFgqhBwIBwR+nAXJYlaqHjJDATDCUaDHM+nFAOn3cdM+mMw/G7sT12dmpnp3Z2amendnbq3W2nvmifDfYRLZLlIi5rK85TqyO89/C+F8XFF0nKq20MqrrmopnJBIVzgJGszJhAFEHGAdagbTu0bYeL8yUm0wnmotAXiwUuX7mC09MHeHD/BM1mk5EJZgJhVAs0ztHUhRg109HNL6Fc9gQhT6aGZ/C6Hxf+UsG0QO5MqiHi8fsANhRFWSCGhPVqibZtQIkFczKdoigLFIV2yJSF1/CYeJCGhvt8OBduC1ESA1BUBQoq831nb5USfORCJkaoRkpefmKMsCSbsnSwhcthTg6jW9Q1e+plWaBwBbx0veW1j7nwqyiKHFLLoTqj1HNiZBMhGQJMgjP6usshfn5GCbtnLnfeHilGnJ+d4fOvvYZXX/4cTu7dRwgeve/RbNp8P03PCJf3AdYxUuk0lUGQssI4kBtSBtq2AyApBolzWUmQDO89Eog7nlYTGMu0fSkldF2HGBJLk+U5TsJmw6HpkPPD1Qjxsw70htqpVY2esWZAEsCHiIycYaywsbXB2UAP3XwViYnRQ3PRe98LIlVLmgU3lwL4EGEM4f59j/W6wemDB7j2nvfgqafeg8PDQ9R1zUWGGQkaoTbgz+bDHFRxU0ZQ1GgTcTgfkuahKBIREHzgJlvBYzafo3BuZACUCjNmVNo4g9JUMpc0mg9BWSnJPjIjuRakR9ChMQLEYKSBSaofnHTiHXjlraCkilwClI22zkseZkRxqFs+8fV0jfXwqNnlrnCYTKfcL6BuEUPAbrzN2NkpeaadndrZqZ2d2tmpd6edeqKzoQ+cJKwaYxTlNYQaebBCYhSA31Or8tbGNYkpzshgixsZ6pmB8842yzU26zXKqsR8Psd8PsPTTz+N4+NjXJyfY7VcYbPZoG3brbC0ogskksOh7GET6MKz8Ixy02TR1KvUUC0AYWQYOq/y9ZRSzWUFq5tK56Tve7SbDfNetx2U7cSNckM1f7AoOS+Ouc8rVobCZKG5fGx8ooTeebOnpFBYEkYJtzWfZMdKHzAUpZBRH5jyGuh1AEbjHCzIAomUG96IgHLBoZlaFGWJEAKKUkK/zmU+bO89d801w/WCCKHdWisrc+7yxldUK3jPhsdoyDqh7zrcvX0bn3vpJXz+tdewXq0AMLuKDwFBQv9d3yOMWCMKy/NJGHIkC8eNiMgAIUYOBUq4lu9DDVSA5jjXwqIRIzcoImIl7T0jqsYJyqgwJQ35vFYoIokS50GO5t2QFH6ZAWXlubKjNRwOGBlpSykfRlQ+FbFh45xGv6vx5/96H1CXlXD48/oYGElJ4c90bYtbd+7i5MEpbt54C1evXcb1p6/jypWrmM9nWfnlfFciVmUFYKPNBZGJGBnRBln63kHPsAIHUU5lCD5is17D9x6z2Uyalo0Yg2isf3guOefdIEleLSghJo+MNiY2JCpj4wObkyLflEg6xfI6EhFMZMSKrEFKLR/KRjohUyxqriyJLnEORVXmXG7VQ4POQEYP+dBmIfQ4ueO1cQ51VSMV1ZNU9a/psbNTOzu1s1M7O7WzU+9uO/VEZyPEwAo8RIQw0AIqxR2RkZAi35F65FVdoyiK7B3pA2XFybLOC25G4VfwpkpEaBtuQrRcXmA6m2I2neHS5cs4ODzEcrnE+dk51qsVurYVT3tE40fpoR6IxDOltG40hEpZgQtXtPBdJ0EotCDKYCi2Kl2Vw3lDO3dC33domw7NZoOma5F8YKQKg7Apq0PwXiEr2ThDMVvhHMqywmQykXB+JSiMzCFZUPJ50zHv9MgTNpwvyGFeNsTGGC7SMgbKBpISoSj4uVRJZKGE5A9joGYjIhFOi6oqUNY1YmTWi+Alv9NZ3mwY8l11A6UENuQgWFkOyv6xetkSevY+pwOACF3wOD15gNe/8Bpee/VV3Lt3T3J2ecPGwPR8vQ9C98jKfzplKjrnHIfpRbHFxPnPWqTlY2CURQohfQhDAVtVCkMJ32+QMK+BQd95eO/hnBN5NzkkapxFMkYKA7mwEtCiRMvKRtECnXM1dBAmDcfzH8MQyte1Gqc66NqFEGFMEmW0/RqnUozykWNC8BHGMue+MwQfPSBhbUqEPnk4oS7s2rs4OTnBrVt38dx7n8X73vscji9dFnRLafzMsKcw7HHIc5JRVMVsIZq6DiSazcohKUXKlI+TyQRlVamw8CHAcF6yyqfmioOGcLPeC2Wlrw2ndM8bgOTwJ0pVkR99lIxMCRo4ElpWH2LNiBJguRivLLmjMRcj2my8rLEgI+kZaiTku3LInjis7woHa0ukshj01W48MnZ2amendnZqZ6d2durdbaee6Gy0voPRZiXOYBwGJmIKL51EVxQo1XPKuZ/DBjXGwskfhqr/4VpKfTb2poh4Ebuuw8X5Bep6gtlsiv39Pezv72Oz2eD8/BzLiyW6tmWkQpTBw4/MjBPD9QcPl1EEMlbyfSl/x1jRm5GCJAKi5/zCtm3RtBv0XcsKE2oX1EAJkiR3REnpAgcDBjBCEWOAB9A0G1xcABzqs7AFdy4tywplWck1CLPpDGU5gXUFskkQwWQWBkaAyAAUaMg7TEkU+XD9MerGt03QKB8B4u1z19EkRU3OsvLSsKErHFxZwBEbfghCYaxBWVikpJ1hJRQntHXGqn8u9HrWAAXP82azwe0bN/DZz3wGb7zxBjbNBsZwQV/fB8n1JYTIiBFB2DZkI1ljBdUJGSXgkG1EFPQNZFAWJaxzCIFZOwzMCO0kQUwDOHzNqRaKSDlbshIjgjMcIg1CB6i5kGwgB2YOEkVDYKUNMeYEPkQUwuSRiBAR8xopwlEUpSgty6Hz9HBR5pDSMA5rq0wnYg72mBJTRroCNiX0fYfgId8DRBPhYkJRlAjB4/at27i4OMf52QU+9OEP4dlnnsG0koOGYVQMxmgPLjCI5WCMIMYjDU9JFTiH6wtJi1AFwPdAosw5vF5PJmJYi7z/QghIo73E+5pE/iRnNvBac+rIdhGoHjr0dGmMsOiIktZiXowQKgAwlADLyA4byiF1xoce67MVYCxm0xkmU0mpEeRMdiucXCMlkl4REdZZFLJmRVGA4IBdycbbjp2d2tkpefydndrZqZ2depfaqSdT35KEwpSpQHL9+FlIwrwue9sqKCSIizHiYWH0d7n5MY0XoApTFJ1MKiUpnAEL08avsVmt4YqCUaT5FFevXsXR0THWqw1WqyXWmxX6rgelcffQJyl2LQoiQVPG9IAue9zZO08JbbNB13KYyvuQKcfG6EcOnen15RoaetyaD76BbFTUsyUCjEmwlGCsQ107TOoa0+mMQ8GFg++9cL8HoZErmXHEMjtDEnYDaywSOERt4URZc5MmTTcY7muYH/VoyTJCFiN73LC8xkO4mfJ6OusAmxAjJGcSglrxhFijIdYgc6soBgFIiIk35/L8DG/dvIkvvPIq7ty9g873cBJO7T0r5hhJGnh5kUmHsixQ1TUAw6kCbcdc2YYVJR8iRME5B+dYAfWSf2kwFItpaDXEwEZeNgCnGwBlWfPzEpsgbaa1Hfq0jJwISqHhYr1Glg8gF2kZIzmiKQ1yqygGaZhZPyXzaodrAqwYmL1GDy7D55PlQtMYI4JnlFc570MMgKYmqOKrEiuURDg7W6LvX0XXd2iaDZ77si/D0fERCiOsGjRYf2OUN13p/bTTqxQ3pgRtlKRKg42UFtUO7DdOKBud5fSIIoesI6PbSTeTXBMGkBxrlEzfaGVNc2GgyK/Oo5zfBBUcZhfERYucZkGMHksRMVMLFiAirJYrtF0H7/ucPrCuVpJqM2e5tIBJo/xY6P5nuVQkaehejccyiewGj52d2tmpnZ3a2amdncK72k49uUDcmEERGlV4JjMhWCc5oSNPlRUQP76iGLqipDcrgjTk1g5Cyx1KKRfBGAx3r0YiBOarbtsGVV2jribY22MUqWkbLC/OsVqt0HedNE3iDWZGIR4SAZN6qOw5AoaRDBo4tdmFZB7r1WoF7/vMUjF8IQYFrIofcg0zKHGoYIxe1+6X6s1ba1BWFaazOWazOaazKabTqTCLOMnX5OKn6ZQV0+1bt3Hr9i1GP8oCk0mNqq7y+/WzujrYYtAYPQS2pWWcPsAIE4dBrbOwrgAcUMpa6hoVruDnMylvyodDqTwXUqgGQF1izsHs8OD+fdy6cQM33ngTd+/cRQzcLdV7j77ziJFZNbquRx+Y2q90DmXhUBYFkBI6H9C1HXphiOHmOMyEoggRDBfJdX3L7B1GFImsf0gRxoCLv0RGeOMaGCPojxSMReLwtxNlCmPkwCLImBmUVNJDhjVSt8WSXriB5SSllEP0uhc0vUBZPgDtxmsBSKOknB8u9Hii7MeHKFCCNyGvSSTCdDrhorpkhhQNcKMnBDW4/P6m6XDjzZvYbDa4f+8+PvDCC3j22Wew2FtI7vJor41kSfN1eT4Grm82glwcaiXlQvOCjR60wGin9xGEHlXF7ECucGg2G/jQ533HfRPkX8bBgDLLShwdmAwAY0WZY5v5Q5Fl7uDMqFyKSWRfDq0G6H2Hfr2ClzQNI8ZIIt8I3mN5cY62aTCbzzGbz1EWJYwBAg2dj8uyyAqZSBqpUXwIrdqNR8bOTu3s1M5O7ezUzk69q+3UF23qRxZw0HAOcnh1WB3KD63DGsBYlzeE0n8lUkGwWygF33AUNoK4JSy68NbazEvOdFvMsLBZb7BZbVC4kpXdbIrptadwcNhis15jvV6j2ay52UoaBGfcCVU9TBUuRkYAVS9a0MeKPW4V7+hGY5TMqP3Knl6Spk5OlK5+pz6XzmfhHOops6LM5jMs9haYzmZwRQFniywwBiZzpis6cKm+zPnHN0vcu3sXq9USy9UF9AmYt7sQJo4KZVUxrVw9/JtZNvgT9FiB4TxOlwqAOM/XirAqfZ41zPPMRqiU6+vcEShFplEThWpsKfPFoe+AAN97rFZr3L97HzffuIF7d++h6zoYocbznUff9fA9F+YBBrO6EiSM5yQELpjzQbulmmwwNQSvbCQ+BPRdhxQCtLtpjJwrm1LKoVBjeC1ZVsBpljQuJOPfLZDD2oZVB6NDcuBRFEgXJyNGBnB2uD/dU1G+M9dZYrShCQC0gMwA0O63SXKggcLZwZDC5OJEEKNYRFyEFxOxwYIiUoMMaJ62007E8lrfe5yeniJ6bvS1WCwwX8wlz9Ru7YXhAKNoqB5a9DVW2NYZ2GgQiZlHrDEwNJgEEkQqeg8PoJrUmExnKMoKbdPwWqYoz7YlvnplVu6K1hkFmTQUHRED56TGzPevaA5y8WrwHivp0pzUoIpxh9Gj53AETYlTbZiNZoPZYiHpJVyUpykMenBmgyVoUUqgJ4Snf62PnZ3a2anxYv+ftFPOGFhh5AGkjsT3iJsG7dk5zm/fxb3X38TF3XugtkMp9iP1HrbrEfsAEyMmMJjXlSDZvLZR7BRCQpm4MB+kaXAmO0TWWXgf0PU9qhByOlpM3AgupYRZWWT9nMAHcGtN7niuh1IQ8gG9kAJwiJ0KIE7TcyyziYgdUKN+rDggzmI4kIudgtpDyOGfEA04bUhgeGMVnbfIUbHIBUq2dLwKcj9BiB4sDErj+P5ChCGPIMqweOgwbp1DJfIz3uvWBzSnZ7jlAybG4nA6xf6kloiNkdtjO50oATECIcJIzZCeURwREKJQ2SVYLRgH1ynZZJFEF+3s1KPjyc6GLZj7OrGCJZKDjSymPjhgMnOHBl+ziiQutNJCE94E4imSQUgRvuseQWDG4T35GoxDNkQJthDhJ6DrO7Rdi+VymRGWw6Mj7B8eMNKzXOLi/DwvMjCETRW1Ga03BvREr8/a2bkCmTIwxhHfuGzONDARAIAhDgH2yfOG1Y6lklNbFAWm0wn2Dg4wmUxQlDXqukJZFiJdIjhifMYNinSejDHY399HVZSY1DVu3bqF9WaZc46jDwi+y42IVBgLV6KqJpjUTBNZVjUmkxql8I4PxktXGZmLXGnrIBRyeccIulgor7oIY4opKwnd3DH6LePd+x5npw/w+uc/j9df+zwe3D9hur6YQCmwY6AhZEOo64qpKknYGUjo8+Qga62BNQ5khctaN5cBUgwIntlBiEg48EXhpABjgEldo6xKydmMmf1lUAhcTAk9LIvMMm84sjG3hmSPEKwlyQln5MSKogIRyArNnhmdjwor3PPS+TYBUNpG4rzZlPeEPCdBkDizhVIZ2UjMOjPkBccg3UcpbRXo9b5HCjFzuW//WG5E1QdsNhvcuXMH9+/dw5WrlzGdTRlVtCajzMO+QkZWc/idUvamjBZ7EitrvndetASeA2ZEsVkhV5MaRVmgpglgDPq+5dzXvHcVDVa9ovua1zumhBgC/0h+swGYZSMreHZ6mF0kwvuU9+J4Pz5uDGsDUCQEH9G2HTbTdU41saN9rT0hoFHzyGjabjx+7OzUzk69U3aqvnsXz/74J2BiEFCMMs1s27ZYr9Zomw0f+LhSn5/lg1+O9C3fCvrkJ2F+5qdhEnEdzWIBrNdAjJxDXzigBGixBzQN4P0g2OK0EQAqSiRxMrIeTXw/1mCrqHprjAGfh/5srSL76rhpSpyR51DZkv/P9k+jH4MgqkMzto2jj/OYsH6mzSavQ5bekZzocygox7YOopfV+TEwVQUcH4MODkBtC3v/PlzXDZc0ww1aY+A6j8kX3sDh6Tnm8xnfy2QKc+UKUJXA3bug5XKL2U3vhfWxAfb2QJevsDNx9y7o7AwUY5bvzz33LD77Zc8i2p2deng80dlomoYFOiYoRQbTdo1vTkRGGTLkUEPQ8K54l0UBZ3Qz8I1yQQxPXkqcq+gch8GtYeYAIpLQkC4CxHtizmtIMYvm14UQcH52gYvzc9R1jflijtlsitlshsXeHtarFdbrNbqmZWRcJ38Uqh1yFTknzxrHoa0YB5o9klxGOzBhIAsEs3Aol3Rl3bYQGYOi5KZT09kMe/v7mExmsI75pSkBvucUgKJwKFwpRiLBQBlGZF7twGc9nU3x9LNPo6xr3LzxJs7PzoSWDzznvGq8YRMhJo+ND9isZfNalw+bZVmirmtUlRqVKiP8ykeehwGHEVVQDW8f7700L2rQ9x0f7GPKz0JKNUcsY03b4MYbb+D1V1/D6YMT+N4jRc41zkVJMJiU1YC4ycGC0RCAAgGRJVA3GBdOSdRA8nAjJUQkwBnAMapijbBPyCY3lhksopFQI2hEcc0y4JyBgRvpVI6wOMc5sAaEGDktoHBc3MmnajNoZQsYQQto0I9ZCScMyi9EyiwjWtTnAyNxWrCn3XYHZcn/xxz2UZy9BO/7kXHappdMkoduHcv+RnoHaERIw8wh8HXu3b+PV155BQcH+3j+A++Hc6IoiefEyBwOQKygXeADEqkTlAaZIDDKyLW/A2e6ui9EXDwIK+kG1vLhBxP01EmhJLLBHRSIMt0ob7pGp4YCR0V7eM2ZpSVKcySVd0BSc9QY6roZvazZjnzlW2HEudkwwlWVnIpSzyYoRrnyzghVa0pc5Lcbjx07O7WzU++Unbr82udx8PO/sHVm/qLj2jXgu78XeP/7gW/+/4A//+eBV14BPvpR/vc/+2fAv/k3yMUJH/gA8L3fC/zkT/Jrj+tV4B790/9TY7EA/sJfAIoC+Ft/C7i4+JV93/veB3z848A3fANwcMBO2i/9EvCJT/DcPux06Wha/nEO+OZvBr7lW4Cv+iq+r1deAf7DfwB+7MeAtt3+XF3z9b7pm4D3vpf3461bwH/6T8A//afA+TkA4GI2wytf9kwmctjZqWE80dnYrNfQHFeuOOfCHErsjSnKojftjIU1EspjVzSH45S7G8ShqkSMQqWQYCAodDEcZlShBi+0hlKQxAce4SmObCSscZwnGRQVMCJX3Ep9taqwmM9QT6aYXJ7g4OgQzabBer3OLAG6uJQSCutgpNmMs5ZhYmtAFoiJc3FJvGsnOY/KK27lczBsUIhdzHyQc86iKgu+l8kMs/kM09kchSuQGMjlH3AotSqqUbMYguYDDsLGQw+jxlgcHhzAGYNbRYn7Jyfo+w6svEdUdDQgYkaQP5MiUjTCNAKeW6t0hxyerKoKk7pGXU9Q1RWM4QY/RVFw6JeQ3187Docv9uboe22q1TMFYN8zg0vfSerUCrdv3sCbr38BZ6enmVIweI8kBrWyBaP2BPChgiMXSvkXUwKVJXdcBVPjlZJrrc5HSoQ+JPgUECM7MZQSpnWFvekEVcG50D4Q2j5g03u03iNFznXVCImV/E1dl7JwKLSojwhVWaBwUrhIzNjhnJU82UEJRclVdRaAsRl1VINLGAr6gjRgIjKIQncZkoM1AUYODc6w4Xei7EiuEyIhCNNOYSKCIEc5pUuvSJRzOpVlglPLho6wTjj4Oe+WFViIEW+8eQOHh0c4PDrEpSuXBdXRQsMRZ/lIoVrjYA0hghAl0kKC0iBxIVqKGiERXaN+mjgmuheY2UZysStC7xmpVkpDjaIxk0nghlnCBOOMk+JSzYEd2HCioOZbqGFiBJQSDdGoR0BFKa4TR1KjTFkvpoQUDYKkSEz7CeaLBeq64gJRocEc5GE3Hjd2dmpnp94pOzWbTL90gTw/Bz79aeCZZ4CXXwZOTvjvV6+yY/H889vvPzwEXngBuHFDaJF+FY6yBD70IT7kl+Wv7LumU+DP/BngN/5G4O5d4Bd+gZ2Zj36U5/ett4Cf//m3/7y1wO/8ncCf+3P8uc9/np2LF18EPvhB4OgI+Af/QIQLLOi/63cBf+JPcIrVZz/L/33hBeAP/SFgtQL+8T8eXcDs7NRjxhOdjZiS5JErkkLQzotZmZhhfxDJDdJAwZYbk1ibi4oov84eWC6+geTMpe1wWl6k8UQAALGiBEVYM7j+WlDGupcPmpvNBr7vUVQV6rrG4eEhDo+OmE3i4gKb9QZd340EhXJePkNUPJHWOLiClVWeF0FotW7fGAtX8IZKIW0pcTZiBgDzHFd1LU2GiuyjGjmEGUGsMgouIUQaKWMVzE4MVvAB2nXz2WefxWRS4/bt22iaVqcMysIg3BPQrpxKA5eF0AgveoqgvkcHYGMGdMm6AoXlHN75fIHFYoHpdCrNoARVMoC1E+zJQTyGmGXAe49N0+D+vXu4c/s23nrzBk5PTuCF+z2mCBjOE7aGGTsoESZlibJwqCvuBMvzy2H/GJm6rq5LLKYc5qdEIMM51E3TYblpsGoaNJ2Hq0rsz6Y42pvh0sECs7pEiAnLdYuT5QZ3z5ZYNgJCZVmAhCzZ6FtjMa1LlM5KyldCXVWwlu+9Kgtm+iCCsxrxUNRUc6G5eZMiDNq9NBKhjwk+eOZVT4REBlFC6JGAru/RGkYWysKhLguJoPAeDinCWUJhLYrouG4j8U9MiQsGEzKDhToaKgzqQOnhSqMmzGgirCjG4uJihVde+zwW+wt8zWyGxWKRiwRjiqDIObraVRVA5j3ngxghFYXQXyYknWP9H0EOOpw6oM5YCAHoOAdZdZO1FlVVoe97NE2Hru9zutiYB55SAgp2mGLgucq57YrymKFg0Ix0T0oJPgQYk4aDp9muMRkPQwNXuQ5Nb0jeI1z0aJoGs/kM89lc0Hl2EI35fx3afOfGzk7t7NQ7ZadmJ2dfukC2LfB3/y7wIz/Cjoag3vmUN64netLffzUNfTZx7v+3h7XA7/29wG/4DcD/+l/A938/cOcORx6+/duBP/knge/4DuA7v/PtoyfPPAP88T/OTs/f+TvAf/yPHE36iq/gz/2BPwD8z/8J/OzP8vuff57f7z3wN/8m8N//Oz/P1389R2ve/352gJomg3skOmhnp4bxRGdjO49OKeASnGPqMGuk0YsVDl5KCMHzhESujNeOnKq8NfVFaQqVvo8gCtnzd2rxDsuXzWioTnzcujfkXDH13rhwVhrOCMIbU0JoGrRty+HXSY1JPUF95Sqa+Qbr1ZIXRa5rYEaHLsmnIwDGCuezQ9s0WK3W6Ps+f0ZZHpx1QJGks62gLpC/4QAAIABJREFUR4aVfpCwGIgEveEQv3KCMy2fFto+7GWyAez7Hl3bCaWepBlZg7Is0RHn2V66dBnWOrx14wY2zZqfwfATJmOQj5TGDLYCyHOgRpm9Xlb4mspCJsIUBYewK0a2lKbRKQOMpL9Ya5CSrgUBMaFwJVJY4faNN/HyS5/Bg9MH6EMChDsbsjmsMdyQKXjUZYH9eY2jvQX25/O8aWfTKaaTGj54BB8wm1SYTyfs2ccEWAcfIs4vViisReUs/MRjbz7H05cvYzEpMZ8xN3zT9LAw6H1AN6sxr0s4q7UTKUcZIjG6WBfctbWQaIc1wGw6YTYRJ7LCMCCnagmLTEwhF+0Zw2wwKbKTpWwUISb4kBBSlR2RkPjvMbKjEGqO5kQpCneFIrOKklhEx1EUHxOKaBGihY9WHI8EIEqUhWUxpzXR0JVZIx1jBQQCfO9RuALRBzy4f4KXX34FR8dH+NCHPozJZIoQPPrew0ePIaUlf4nsY2nSRA6aW87BDU2nSiBVZJSkcFEOH1CWmUHZah2LKxyqqgYloEs9IoQGE3zYMkB2fmIa8vU1N1h+BQlyPp3NsL+3h7Kq0TYtLpYXaJtmcJ4e0qGkz0h6wDM5ZW7rdRkp9dxduO0xm86wmM9RleWuzcYTxs5O7ezUO2anVM9cvgx03XCAPTgA9vcZRY+REftr19i56Dp2ODYb/gE4qvH+9/O/n34a+PW/HvjMZ4DlcizIHOV45hk+PJ+fA6++yt/3pY66ZoT+5ISv95738Ny8+San/xgDPPUUX8sYfo4bNx51eIwBrl8f3nfrFnB2xmlHGrHR612/zs9pDL9248YQHXi7MZ3y3N669fj0sYdHWQJf+7V8jR/+YY5KADzP/+JfAL/1twLPPcf3+0u/9Pjv+MAHgONj4H/8D+Bf/StA9gQ++Ung3/974GMf4+9QZ+PDH+b3/+RPAv/1v/IcpcQpVHfvArdvD8+Z7Sd2duqh8URnQ1uyu6Lg1IxR19C6qlCUzJRAUOSCGwj1fY++a0AUkYgVsPJ2D/RYBGXTGFBTC0LKmiQGZifSAl5rHZwTVMlwOLx0BeexAoDhYjLr+LDKh6NyVKym06zaiotgisJgMpmiKitBwUaKLg358ZwLS3mhjGU6uqJsEZOV1wiag05y0I3SgEefs3QOVV2hKEuhRBHUzRihK1OaNakhIEaGvXBxd12L3vfwPR8wtRCOc2+dhNZYsZdlgYPDAxgD3Lx5A+vVKjeG0Q62BpSb/WgYLRuyhxS7rhNvAH7OvuuwBtPpAYC1U5DlDpS6EVRurYEUKxKaZoVXPvdZ/OxP/zTu3bnLDadS4oJka2AMIQXmM0dK2J9OcO3SEa5eOcbBYoHFbMbogAEWsyn25lNYaxiVAofqY4jwkdehbTsACZEiZpMKVWFxvL+HSwf7KArLEQcCJtUExhh0vkfhDOazOctK8Gg7j64LwpZEmApDSlVw2oH4FKiKMjsXzknONGReSRSPKI4xm9VQCJ4QiUOgMWr32ZhTn+Io9SNBufeTpH5wvXUkNfjCvR0jeh8RomN5kr/5EGGks60e7lm3DAeH8e/j4jmV1ySOUdO2uHnjLXx69mkcHR3jhRdfxHw+R9u02DQNVjGg3TC/twqF7k0GZ7VeRLo4O3V6thGx/C9FYSMjPUaQG5MVJKRpFuuxvpci35SynBPx/jOCxrIjmIZiXMOHqbqusZjvYW//ANPpDDgCjrtjLFdLLC8u0DRN7qKr11f0KBdoKrqsRkiuoc9jReekmOB77vxblRXcrzT14Ffx2NmpnZ16J+0UnnsO+Kt/lQ+23//9PAl/6S9x2s5f/+vAf/kvwK/7dcD3fR/woz/KKTVf93WMkv+Tf8KH1O/+bkbjAc77/y2/Bfjn/xz4wR8cBPnLvxz4G3+DU3mcY4flp34K+Ht/D7h//5e/IcoS+MN/mFOFPv1pPpxfusQPd/Mm3+NsBnzbt7ETYgxw795w70IPjLoG/uAfBH7372bHRN937x6//n3fxwft55/niMJHP8pOmDHsRP3iLwL/8B9yBOLt7vNP/Sm+j7//9/ng/8WiHpMJ38vJCddYjMf5Oac4PfccP9fjnA1jOF2qrvk5xgX5KfE8O8e1ID/xE+zEPPssv3b7NvD7fh9HQJZL4D//Z3621Sp/BfsYBMn13tmp0Xiis/H+Fz/ATUGE+9pmhgfd5CbrRA296oEk+B7ea/5jzA1tovcZTeq6XrpKcma6ycwQyEUxve8QfMyFd4owbcvPoHiUW7goCjnkcc5+WRSYzec4ODxCVVb5cMfX4dQXZuBwgEn5+imlfE/GMgc6fzbBJCvFcKLcxECF6NG2Lfq+zxSketA0hun25os55osFJnWNqp7k4ldWxmwwYoho25aVdujh+z6z/ADcWCcRAdLAaFzgq5SDMbFhWSzmeO6978XtW7dwcX4x4r8e3GIVfkXYeEGN2DxthuQy2lbXk5y7nFLCZrPGarWEsxZlVaCsStSTCabTGSaTKcqS8/+ddUAKuH/vHl59+bM4PTnhoj1NV5CC6xi5iLl0FtcuHeK5p67i2uVj7O1NMZnUmGSUyqAqS0xKDU/yxjOkrFN8wOimE0yrCvvzOQrnMCkLFM5wsVMWKQNjA+q6xNHBHi4dO+wvFiy7IQqtboSBzSFKZCXABxOmgjPDprV8iLHgVAM9zBdESIm7r3IhJCEW6lDw4d0SIbmEVBQoAjcFiupUiNMxPogrQ0kiLsZOmm6ljoUPfLBI7JSEENH0PYquQ2sM+jjKAyVtjMWOkpVcUS0qzQwXOn+yT9quw1s3b+Mzv/QSjo8v4emnr2Nvfw+LvQWOLx2jlT4A5+fnWC1XWK3X3FwoDriIUjKqXI8LTPW/jEgaQOYdAExKcNJpVpeU09eYVrcomJ0n9J4RIs6PwxjrUWTHKrpqLOd/TyaAIVbYmwaVsONcunSM46MjNE2D5cUSq9VKWNRGhb2Gu7Bqkb0BMkXqwAJCGU0yhg+OTdNgs9ls3d9ubI+dndrZqXfKTjlr+DBZ11xIfOkSI/Af/CBHNl58Efhv/42djcNDRslj5EP3e97DSP9qxQf5ouCIxquv8kH83/27AVUHGI2PEfjUp/gg/BVfAfz2384H2h/90S9tU1y/zofyp54CTk/5WmXJdQ7f8R2sl7qOC6Jj5MP1xz7GyP0rrwBVBfzRP8rORgjD+77+6xnpv7jgg7+1XLfwTd/EkYxPfpJt0Ysv8rWKAviu73r0/sqSHZSPfYwdoFdf/eKOBsBzeu0aR2LW6+3XiPjvVcWO20/91OA4jd/zqU9xqtT73sdOl35PUQDvfe8wNyFw5OWFF/i1j3+cHRH1SL/t2zjd6q/9NZ5jALnbuFxuZ6eG8URn4/jKZVU9Obwyesz8k+9TkBtruUFPVddAGjwmUEAQpd62HS6WFzi/uID3kk4iTUNCDPB9P/RIsGagKlQDYrA1AXkw4TOSLLw+elGVuJQIe/v7giCP2sIXBiHwYQ+SwhFj4K6rBGk4ZJFgsrBY47aQlZQS+q5jysIY5MDJC5JAXKVPQDmpcXhwiMODQ5QlU6tyd1t+Bt97tE2L9XqDtm0QY4DSEAIpK1ljOJRtmEhbUk/4ObhZztBVVjnS63qC608/g7K6i9PTBwi9h9YgmMxGpHI3cLYb8HfO5nPsHxxhb7HInTyzEYABgQ/BMUQEH9C2DU4fnOJ+vA8jhrSuWakTEe7duYvzB6ewIPgUQBTl8MqpCr7vMKsrPH31GB947hlcv3KMxWyKqigFwbQoS24646TgStOVAAEXygJUE+c5hoDFZIJjL6wyI3nW1APdWHvzOabTCay1qKsKlCg7HAYsY94HeD2cxzjUW+jaj9ZqmNiheRZASMkgRSAZAkzkAwEBLiVYK7mbZDlaUViE6DKiEEdh2EERMNd1EqObiPnYY5LoB8XsIJEBvA9YNx3qpsKm67DpPfoQ0IeAIBGGwgyRh5AiLJSOcDsCwqlPzLfftj1u3riJ1159FfPZFJcvXYZT1LkqsZjv4fLlK/Deo2tbrFYrXFyc4eJiiWa9YYIAiQwZYRBT7nlupESiD1LWSKKmmA7S2ty5FcKRrwebEJx0+GWEO0ROvVOIyZDykDtYZ1EJzaexzCgUKEi9So9GrlNXFcv21SmODg+xWq+xWq0YRYpRegeU8h1sjNw4UpOdRkWt9PmAEIY9vBuPjp2d2tmpd8pOHazWuHpxwc7Bt3wLH0a7jp0OY9jpOD7m4ufNhg+yI/CH4efI0Y/5nJ2Nn/1Z4Id+aHA0Dg/5u/qe//4v/yX/+1u/FfiLf5EjIj/xE48yJL3dKApgb4///eqrHC159VV2mH7gB9hpunWLozKf/jS/7zu/k5/va76G3/v881wb0TR8mP65n+Nn+aqvAv7yX+YD/WzG9/7ii3y/P/zDgwN17RrwPd/Dz3x4uH3vVcWOxsc/zo7GX/krwOc+98t7Nn2+1erx6WX37rEDJLWcjx2vv87v+/CHgT/9p4F//a/5OX/zb2anCYCEMvlnlDqMT3yCnZgrV4Df83s4gvVd38WRr/WabWEUBsWdndpeti+6sKRoQc6OxBadnL4tkVBfab53yiHZfBiJQfK3e3S+B0mvBBAhRQ7rxhhAgRfaEOewj86PrICJdNnkfkbeFCmKjFwRSICEtl0OR2leqnIFq5CMedSN4Vx7Lu4FYgBAQ5g7xoimaXBxcYG267hBTeboNnrDjFpLzvt8scDh0TEWe3v5YNuJ8m+bBl3XsVGLEdqt1MAgijNtjUUm/zRMNUYwufhRrxvlEDyemxgjyrLAtWvXUFUVHty/j7ZpoXn0Y8ExBnBFifl8hoP9feztH2CxWKAsy2yUx0WULCPK0CKpCEm47z2nLLRdi77vsLp3H+fn53jl5Zdx7+5dtC2/FoJHVVW8sXzArK7x3PX34CMvvg9PX72EvdkUlTgUpJvScRTEgiMUWnxtDM99XoZICJGdDO85Z9tLugHPseqWhEldgyCc6iDORybK9xWl6LkoClQhIUjUgCQdKhEyVSbsGNngK5GRWgRK0CKyGDRcSjApMn2tAYgGujqNOEShvwXYqUikzchohEJAFJ6IYMJANyyHrwiOUtRViaIs4NaGC2Q988/3mkYgvS9yOpV1MPL7IG+MbmqH3qIosFqt8ODkFMvzJfYWeyjKoV8Hs4uVqMoS08kEe/t7uHLtChe7bzZYLZc4Oz3DxcUFYvCSHiJHSgsoy9Vo2wvqCYQgBcHSoIosQbvqypES1gjNqbOwQYpYA7P4yCrB2QJlXaOU0LA+m9YJ8QEpwvfMmtY0DcqyRFVVODg4wN7+Am3bYb3ZoGu7LBOqS42uj2w6/lUPZZTD7TDIhcm78TZjZ6d2duodsFPN7dt43vvB2fi6r+NDblnyfz/4QeArv5JR8rfe4pqIx8onDfUQKW3XJ2jfiU99iusOtM7j5Zf5fQcH2wfeLzZi5MM9EadxfeYzw98/8xl2GH7sxxiV1/HZzzLjkqZBfeQj7LB84hPAz/zMcO8vvcQF2U89xWlLp6dcYP3H/hinRP2238bOyksvcWrU7dt8sD844M/X9fC+O3f4kP6lOBoV70PMZvzvh6MbR0cQz3tA6x8ed+6w0/U938ORlW/+Zp7nS5cGFomyFEp8GUScDvcDPzA4Tr/wC/z7hz/MztVrr4HA+sQIaLqzU8N4ogRTGlPhudxeXlvRa1v0oEVlsijxIWUIMJd19D2HmYibDpVVhel0lulHGelNkvfpsVqusVwOTX+G5VImDJsBi2xoxCuk0UMTEWC0dbvJi5Aif69eW+9bD6t6yFSFPygtXuned1hvVmjbZkRthmwkEiWQMPGkxEVA0+kUxpqB17vlvFZFsFiANMzMwkQpQvNzkxnoV/OzQYtuFb1Led2G9/AcFY7ZQ/b392GNxcn9E6zXaxEqDt/NZjMcHB3i0qXL2D/Yx2QykXVXLmZFDHkuXFK0XGhdrckhNiLATPneEiX4vsd6tcJmtUYnz+5DQNM0sFYOxMIm9ey1q/jIi8/j/V/2FA4XC9SugNRVsZDLRrLGZKrXgUNJ0T2Z1IJZVYgSypLQ9wVKSUnS58kNr2iUv0gcDeC5LeGsQ4iMeloXEV2E9TH37yBZu5i0WWHa2gd6GmGHSZpXWWIedUUZLa8WN11Cli0+DBGSG9SR1msoUpJAIKHFHRqAKarJhxbuMGsA4ghSIeulysJ1Bs5bOKl30UJ0TXsYK3E14qojiJhlzBjCel3i/PwcSy1MNZoPirxPjURNOP1Fmg8REHrPdH/WctsUMLrrnMvIDY2aaKm8GdHkKXLkqZaUFzKW2WrS0N/FSFqYMTbzn9sYkRIfuMqilIaGFprHDtknEMcwR6tGeq9tW4ngsI47rg/Re49mvcFms0Hf91LMb3MkjkR3AhJdE7k08ox4ex3+a37s7NTOTr1TdsqXn+OJ+vSn+WD9NV/Def7LJR/Qv/qruSh5bw/4t//2ixdEP25ohOPiYtsJ6aWuLcYvjamKaPhOSe/Jf1dH5uEaEH2/93zgvn6dD9xf+ML2tYmynsq//8iPcKTh27+dIz8f+Qjw+38/Ox0/+INDjQfAB/rf8Tv4GsvlwNT1yx03b/K97+1xGtfD4+pVfoaXXno0hWp8zz/3c1xz8o3fyClkZclO1XzOf/vsZ9mpODpietwYOZ1tHKF54w123r7xG1kuXnsNwJAiubNT2+PJHcSdY4TCcGFL23JPBM0hs3mjqgIbUE59KEU/jTGoJlOUZclIbByKTn3hEaOXwxHBB4/ee0QahMUYjApJh4NmNjTYVtoUaatBmnUmH1Q0jMWUh4NCzMWwcrAKMQIglGXF1H4jRQ8QYoiMaAkirgugxo2VN8+FcxaTeoKYEh7cOxEaUy1kNqARq0lKESRzyEaJABJDZh9C60Sf6hzw4VNRraEBnCrUlJ/XYDabw15zcCensBY4PjrG5atXsb+/h7KsspDTeKNYmxW+MQauGBBBDQPqe4kG9AkADBxATAMbQ48QOpYFRE6xKZiHvioLXD0+xAvvfQbPP3sdlw8PMCm4b4XV5xADmb1ukoLILO8a1TCjH/2dUJYJ1gIuUTbACUNHa8obyjAFJAF8+wQXCjjL6Gc0kuModRAxcZG3ATfwKQppIJULrWU+DX83z68oIPm8ISMhTE6zMFYXWlJGxWirK5Wb4JHWZwzIg8oAby2THRSSe7LgudTC88HR4sOEswneSgGpMbkgbSt1Kw2Uek4OSilFrNZr3HzrJq68fhnzvRmuXrmMoiqFFUgOI6KgYojYrNc4Oz3D8uJCerBwt/i8arLOFoBxnE6VEUuRc8hBzoAdPu+9OEHITpkqFEVK+fDDSFRhDABtXOi2FfcjQ7Uvz3NOj0sJPgb0fcuRIuH9X+wtsFjsoeu63DvBS48DfT7d5+L+whrpE7HLonrbsbNTOzv1TtmpXg+sytb0lV/Ji/Lyy8xG9NVfzYfVlNghebsD7nhOnoS6vxsGETspMbLToZ4psD1ROtoW+PEf51Svp5/mAu1v+AaOGPyRP8I9L6pqqG5+/XU+qP+m3wT82T8L/O2//ctv8rfZ8Dp87dfyvd26Nbw2mXBKV9O8fYRJR1Xxe37oh4B/9I94TbqOHZAY2XEgYuatX/xFZhIbRzoA/n06ZQfxTCmSKdvjnZ3aHk90NrqWw6Xr/5+9dwu1ddvOAr/We/8v4zLnXGvtvddJco7RGENSGnIMVUGLAvMQCD74YiG+SL0IUiAo3qh6EDSIVgliKH1MQDhQ4FMhSKEUUQKikpRwEi3PSc5l5+xz2Wff1m3OOcb4L/3S6qG11v9/rLOzdh7O3lUbR9/MveZljH/8f7+01vvXvva1wz0OhyPGcYIjjwcPHmC324GaRlAYNT9mBGsinD6Uc6RVPaWTOQPgXJ/feTGQDvp+kIaFvSaloholqEEylKiWTi9LESHZY5GNlexUGnE6FRVnVoWfJNeAVhIdTgCKJJU1y2CSJgZRkRC0g4Nzeel8rJBwrT7qnJPks1aSdrquQykFQx7qwDlzgsxgt3JGJNzXypEj/Ytuztg8ETSMzwDzOrS+9P+ZkS9OOYHyu912h03fYxxO8N5hngacTg5tV2qiXKW+EKEAC8/XMcDKf9ZFYDv+zCuHaM5e+/jZ8+f45jffwnff/jZOpwPf/uj9b77zM0//T+cIwQd0TcCT/Qs8ee0O//nmG+jbpm4mqI4vn80L24gCUIrE+XOvN8eVLlEkEoDV+GF9PXD9nLr2scy1ipquaEzQzf7q5uTahVGwbBDqnIGheaibknV0ZZnQ541f/pftvleGanVde40dVOx5S7Eq5AkxJcwpY9Z1kfJysMh6b9mQ0NWHGFWhfav9cfd/uT8T2LkQGhCA0+mI9z94H6+/9xr6rsX1gxtR3XBycJxjxP3dHZ4/fY7j4VALlxldpG46yK0+Uw54sLwRtaVkNUxsIhKvkFhZLzaXiyExuobECbAUSaPVNV7RViOnl9EDqh1YwUDJqmI2wpNHExo0XYfrhzfYpT3GccQ4jDWp1vobq/W7RpMu7XvbxU9d/NTH5acO778v9zbPQjv66Z+Wn7/4Rfm6vRX+/ttvCxr+qmb0qR/+YUHSX3Uw+d3aRx1Svh92ohShCB0OkuT94z8uVCdmoU89eiQb7asrQf3/yl+RxO2/83ckovCVr0iS+U/9lOR+/OiPinqU93Ko+Af/QDbzf/NvSlTo7g74R//oPFn+d2spyUHlj/9xUYb6rd+Sw4Vzcq8/9mPAs2dLNKVp5NDTdZJPMo5CwfqLf1EOJr/wC4sU8Oc/Lzk1wyCHS+uLr31Nrv/zPy8KVE+eyM9/7I9JEv/776/GnlZDcPFT6/bKw8ZXv/JV4W/lIobaEdgxxnFE3/dnMlemn71+vKWAyML3JhCML1oVbYhA3oNVQk8KCQmPnDxJoq8aAUOw1wl4emFNRFM2ioXL1cqynhZjyvAFYJaiQl6Ns4Wfuq4DEYTD7kVKkZwgZxaatTB9UsSpsCYNq4NpO1HCaJsWPviqx240E0O8zLABwMtTRtAaS35jkGxVxWgSKR9/CWPVR7UBV+cHEulVofmIMkh1fGBIUrYojzx7+hTf/c63EZoG290e290em02PThU6miaoRKP0iQToZCdeNZbYnmdZZPaMOWXc3R/w5te/hq995bfw7MlTpJDn3/yfvvo/3P3I6UuvmouX9v//5ka3af5M86Put/Bfg4CuI0zDiOdPn+GD95/g+voKoW2w2WyQU8bxcI/b21sMx0EQZKeJ55oDk5JUZSbnARLSmVQtZwv3wDijTAQHX/X+9awJZkZKgvDaArGwNgDdHDHIE2B6+/o854dMa7xEjWwd6yvsXgqUr68LghQZZEhNkzFGhEYM+ma7wWa7RUoJ4zCIQY9RqTN8bssu7UPbxU9d/NTH5afit7+pU4VFStU2tl/+smxIv/Utoe689dZHy9N++cuSL/D5zwN/4S8AX/qSJI7/Xlrbygb7c5979euePPm9X/NV7c03JXLzJ/8k8Pf/PvArvyKHo5/7OclPuLuTw8E0yYHjj/5ROWz8h/8gffX5z0v9jN/+bZEM9l7oTYeD9NntLfCLvygHlj/1p+T3v/RLH30ASwn4p/9UIhs/+7OiCPaf/pPQs372Z2Vs/sk/kX4G5Np/+S/L7197DfjCF5Z7/iN/RO7Z6FN/4k/Iv7/8y/L81n7zNyVq9ZM/CfzjfyyKW2+8IcpcIQh9Tg+lMo/KxU99SHt1BfEkXPWg8lyGCA/DgM12C+e9JJLoA5iRE06lX048ioZKn9FyrSprJ6hSypo0w0Dbtmi7VgZEQ05gVKNln2PvJ1oqGxvnzcrC14x/SMl1DkJA8cGrHJ46nSJa4Jkl8U+cTIBzYuizyvwJulCQYloUBbwYbnnuqklSeaFn0BIs3LUYcWbWEBQvP1eDv55CWH42hEzvQe5L0fECDaWXqgDkvHBxN5sNJK8gVhlTHwIevfYannuHw/0B6e5OnzdiGMZ6CvZeQm1N06Dve7RtW+Ub14faRSJRuNMpJ5yOR3zw3jt4+1tv4XB3awornHbl7vWv3fw3/90vf/6XrrYbPH70AJ/7gcf4wddfw27To1F52qXPtG9w3l+2uIxOtJzkbc0pOq/PzCwbiZSTzvUF9bMrm2MkRd10AFT1yZSoZOEyNARa6UhcK9ta9EPAC422ABVdLGU11rxK+rYxrx4aNXF9nZ+xfKY9r/7NEI2CJSqhyeJZFVlyzoglI+aMcUo4jROGacYwR8SclHJhCfNQ6dxcAZdSGKf//vS/l/+x/OIPtT84A0r9SFJRfZ6jIiIJx8MBt8+fYzgOUhFe174PWv1do0VRN4WyDqQvUpLxdF7yb2w8lkTPjMhG6XLLnKh2R9cjLFHVIlSKvhbW3ZQhrasJzTY3SkWbKu2jIjvST6lknTsE1grPRuNhFDjHkuQXs2w+vUPTtLi6usJut5M6BcOIcZokEXnlTC7te9vFT1381Mfhp777zbfw489XFcTfe0828yHIQSNG2ZT+5E/Kv+t8ixhlQ205EoAkS/+LfwH86T8tkrLPnslXKULDWRf4k86X3794IRvjv/pXZQP/qnY4yIb9cJD3vZzrcTrJfa3rSwBycLi9XXISTifZWKckm/g/9+fk9/f3EsWJUd4To2z+Hz6UqMJP/ZS8bhwlGvKFL8i9PHwo1Kw1hezddyWi8Qu/IFGJf/7P5dof1d5/Xw4mf/7PC63tZ35GnvO99yR68au/urz2+XN5lhBk7MRhiXLW48dyz3/4D8vvnzyRQ9U/+2fnh57vfEeUu/7SX5LX/tk/K/3y9tvAv/pXkoSv/ckscvJE6eKnXmqvriDOyyaLgMq5a5oGJSVM4wRSBSCAasKK1wqdH84fA0zvurCEe8UQoiaaNm2DrNWGgdVGDwA5V6ue8+dhAAAgAElEQVS6niFGQOXemoGv/a+bIiv45J3TzdiC3NSBJq06CnEY0zShawBmcQA5JUVaJLwtBrJFcCLDWvtiBVhBJ1tRnts6jdDZyddeZzcM23Ca7V9tntdjpIZbtJLFYeZcMMdZqm4zIwSPrmyw2+/Q9x3atpMq0+hhJLtSRBq232xw2B9wOp3giWSjnOXehGtfMM8TpmnC6XRcnGR1YkGKazWNSqgtlJjj4R4fvPNd3D57ihiVFuDlJN+MzdUb33rw04+udvgD+Az+4O6z+IHudVznLbrGw1uSJdTB2cFi9S/DDhBc50h9KUNpTkuyltGIjBKVc0FJuV7HKE3ib20Ros5LMFQZZqFFFKUe2XGiZFFsyUXQgqoitbp+0UMB83JYEo6nhfm5ogeFFyRBlKgUpdBnwUq1pv6LhQKVWdWsysLVTrlItfSUMEwR/TDhOE5oxhFDnJDScg8M0hogckiRzwfm/9b/qoxNqc8h8zDiNAx4/uI53n33HRwP93BQpNZJUj/U8Eml4mWDZ2FaAR892q7TTUiPEEx5Q5L1kxVpm5PQJbyzCLUaMpmjUgGdzg54ukhhIWyzCdWG1PVn39r3XN9TCp/ZHwAm/X82b4sm/a1tVE4J8zjDeYfQBDHoN9fYZuHyDsOAOP8equv+F9oufuripz4OP/X43Xfx83erw8JbbwF/+2/L/Pr61+WBv/AFodZ87WvnD/xv/61spr/5zWXDn5K8/t/9O5HKfe89iW4wA3/jb8jr11Sit94SWdXbW/n6e39PaEy/WyOSw8uv/zrwa78G/Mt/eV74rhSp1/HFL35vQbx//a/l877xjeWweTgA//AfSj7Gj/2YXP8b35BNedsuB4P/+B+Bv/7X5Zk++1npn+9+V6Ialsvw/Dnwd/+uXGMdAfrt3wb+1t+S5zbq0u+l/ft/L9GGn/gJyd04HuVab799flD4N/9G+jkEiSypb336pS/h9Nf+Gugnfhz44d8Pmme4r38N/jtvI4Dht5vV2tR+/V//F+BH/iDwh35UZG6//GXw++9LBcjNBkTAYbdF2/fottuLn3qpvVqNirQ6qy5MC7M474XmUEYxesod88EMONWbtn8N0TGDzAlIURAL5xyKJ6QUpRMyME8Top4WiTycym8yyYlrbaTXyX/ys2lxu9WGVJAvkQdTGVQNUTvyinbHuhmUzV6RjZbyxs0ROCdh5jTPaIIDcbMK+dpQWx8AogeoeWl6OGWdYBlFjSMBq9oPjFWiELPKoC6n3/Vz16rOkA11zlLFteQiYbCmQRsC2tDAOUWKxghJnAvwWkTGkUfTdNht97Lx1g1l1mRlW6jFfoZIQVrF65jSKjJAsMJWkrgYECdBn2KMS8K0AS8EeCL0XYdtv5HKvzqXHPklCbAUMFTaTbaqem/F/Jxcs5AkX5ZF1pJXvWubcWKRmkVhOF3QXIwMIAcNo00UzivaA9V/fVC0hhnw4sQFKSsoiVCcQygBbVkOD4ULMmmUgRRtYF4qghbAe4ZjB3ZS4A8sdS8KAJGTFICDVfWiONaEduWFK0ppXWOtYGWoZCuk3wtVRJRwxIZ6csjEMlnVmBG/hGESKrqyHHTkGZPmZHzwwQfYbnsEF7DZ9NBQC5aNCdfr2XwOIaDb9PWA0fUbdK3QR4QWUupSYwbmacbpeMQwnpaQ9Go9FlUGc86p5KZVS6aKOjFLvzK5Wo/BrkKw/vZY9+j6/usaNdqNzhPJETJuOEs+gNqp5XAp6kYDRrjg0DYt+k2PTd9f8sNf0S5+6uKnPg4/9eA04oECSRHARAC++lWxjSpW4k5HuC/9Z3nWzUvqSN9QKs6mO//9t96SLwDsNbr01jfk3379Wga+8y2dLAD/xheB3/ie6f8hjYExyed7ArumuivkCLz5NRn2rqkvZy7A1/XA1C6/Bxj46lfAVZ525UmCX34aR5Hu/c3fONv0nr3m3Xfq787am2/KOCmaX5/i7MC63kTL//j2Fvzrv1Z/x+dvkNeXIgc6MLbk0GpH/G93t/iVJx/Av/1t+ODRhBabTY/Hj1/H5z73Wbzx+hvoN51EIXF+XR7vAAfk/+rHEP/QHwAD6PoO/WYDur7CD253Fz/1Ie2Vh43ddls3D4sRpooI2e8FhRHpSmDRzraHso4SXqkZfTE48zjCaYE2MQ7LwFiGvW7F5Jql1M3RueFeTqF1c2khcSd80KAVpoWeYZVYrY6BKvKogocgISRdRATngzwjCaf8cLjHOIg+ttVRcKvFsgzO6mS6mlKCEcuDUqGziWCPokqGNTmv1JOmq9FuqR2xIOupiPF1RMpdDZVX7FVNwZKjiRwoixRgUeTJkHIAcEGq8bYk9SwcyaY7ZVV6YaHI5HHCPEcQZIxFYpb17xmn04CUEw73BwzDiJwM8UPVZSZAiylJ6Dt4jzZ4ND4ov9FO4VzRQotqyPtJN9CQKpwkm3SGBwpWcnLLptiSu5kJyAsiD6Dyrx2Ed8wFIHiwXzbaOnoVtasLGFQNeMxycCiQxETHXlSvuACcUKgAeFmfHmC/ikwwwCxISGFWBSlRzyr63OwEfbX7ISfzoMBBCgrZYYarFSdFAanI9945NM6j8Q6Nd1LZOBKg/Va0fyQatGwa1raYdHxSlhBt8DJP0jxjHCdM0yxzkW1DZ6Nfly+atsFmt0PXSfXftm0QmqZuEJkB720jsTiltpGDzBT3GE4DhtNJNjPaj7lklDmvHJOsAWap2iprSg+ZkLDyugp0fV49qKkR02uXug4tSdU74+WySofpe7HYNRMVsGbXKHNGjhkpRpB38O4lB31ptV381MVPfRx+6mqFkP9G6/F/XPWgELDrO7zx6AE++/h1/NAbr+G1B9fYtD2Cc2AyGykR8sW7GfazAr4Y8kxmA8QprSix+qwafV+kmlfR69VWmAGNgqH6V/t9RcD5ZT/FKCkv1GIdbfCKaptzPVAWm+W88k+ygBQ/MtTcVA/PBU8s8l3UbRRwZQNIkUr5Smxrk+tcSEmi8DEXxJgwzJMUoh0njHPEFCNyWe4r61zMXOCZ8T9f3+DnNlsAwB0XvJcTqBB8KeiJsOMWlDPaIiINO6XdfaifghYFbdqLn/o9+qlXRzaYK9/TOnEdUvEhCE+WNGu+LCcmM/hm3JyGbcFixEOQUOYwDCiRAXaVstJ1HbabLYhIinqtEvpssa5RE/2LDM4q9GM8VO88vBbFkQWb1Agtm661QzKeKhEk5BwagAkxzjgc73HQMvBWhZr0tUtIazHKxkM36UPoJpeJV5KMqFxhkRBDnaAidebqxljawpfPingzuEqveg0XOw3HBS/P37aCbBUW73AewlfXwpJIyCzqIUQELgTKWdEcpwuJqqRriklDaDPapsHVzTVC4xWBapW3P2EIR1UCkYoY3vl6KrfxFaclBwYfxHGg9rJREsSJFbVYJiFnGER18qSoPrEWovP176UUFCfvzz4jeK2JUWURuTp1yQVdEj/NDS9jv/AuqV5feNOUEogZnkjiMdpnImeZkdmuJvQkfQmMt2mHIu9VyrEULRamkQhoDkfRZ1UjBDa0Ua+FRSVmiRChOgYH1HnTNY3kZeSCFDNmInBeUak0kkF67bUNZn0+EIHJ1YMJyKlqj45mfc85uuy9V5Rki6Zp4ZRbbv0gmytJ/LRVwroYinNwgdG0osE/T1c43B9wOh5EM7yc11GRKI7O+WzBKRsNu7MF1cklL/Qusz0WwSo2d6wfZC2K3RO7Ro7q/LLNJlb3b+82O2KbkxITMl7iWF9abRc/dfFTH4efWnumwRHeDR4uEHaNh990uLneYXrtAfLrj1CaDomcQsqlHki/x0+tNujVfpo9tjnB9Ry70O0YoJJBOWke4OKHytpP2W9f5ad45adyRp4i0jxrfy9+KheRRk2v9FMQW8+m8iYKgkX9lNVnkrmzoi0bVU8PNAtqLuIg0SJV1U8BmYDsCMl7RCKMxDgy45gL7mPCoRTMKcuBQ2embK4ZgeW1yzy6+Cl5nk/OT73ysJFyRhX+e8ngFRZFuawFhwioYeNSuCbeGTfWjKNTxQtgKQImSKhcv20aNKFFCA12O8ajR49wPEpRMOHT08qoL82Q7fOzfgFBKC6CuogBYDtxFwtNEZwTVY86OHUwGNMw4Hg84f7+gGEcJKmvXp/0+prsI+9SFDlXmVA7YFYjwMsEPHcmy+cCQn9cIxjLpJUh0UOrfA9Co+iY6LU7OO9AXkNtxg+EOdlFM50EwEbJJs0oplLu2wkvl6keEAA1LllqNbTBoSTCPM84Hg/Y7nZoQgsi1gRgr/SAVkPiDuAlD0McpoeviVFO8jQghwUl+8DByXm+FFTrajQhNmNe9DkJ5DwMbRS0UhdHzioPKRU4PRGKk7nstI9zzkg+1818KVIt3Mw3SNVMFEkzo4rC4JTBKYMY8DD0qmjehRrfAsmfUIuxsgEqybugNIUtMVuN+Mo5yXxTAwo9KrE43yUp3YEcCwWi3gNXRyiblqLIbpDIP0uEYooRMZfaj0U3DGdha1rmLRcGS7gESSX92rbBfr/DdrfRCsn2XPWm62e3batynobEqUMqQhfzHvA+KFKrpomF3gWWz3bM8H2Ptmmw3W1xPBxwPBwwjqMioqTFEyWyZWsUuqbgFjtgOUBWOd4QVWgEDZBnBvPZ2pD1aXQ2AHUTZnOezow3AC2etCwKcRTA2Ysu7axd/NTFT30cfsq9VFeBtH8ufmrpk0+Ln1oTf23eXvzUJ+unXl3UT084pRSkKOHcbiu63oaM1Ix3RVuKnpLsa42gGD/V/ta27RLmhquLQEJ2BU3T4PHjx5jnGc+fP8eL588xazKZcXABOzeiOomzSVWkaJypVACL5rmd9Nbl3WVsxLjFGHF/f4/b2zsM4ygTTQtISbxppUDiUJFwQaNIFm3JiwOELlQu6yNzDUmt7+Es9A5b1PZ6RUJeNvjVSRqVhuCch/cB3jcLZUnRIqezllcOQTTKXT31k3NrgEQRAaiikTwzE4O8FIXhIglQXdehCXqwCB4NtwAzHjx8hKvrG7x49lQKttXnNJSO0AaPPgh9qkCQK7da7CYPaUpMwDkFyk7uNhdylpM+OYe2aaqUKuvYmGLEupqw8RYdJMzIxCjkENyCzNQAqZKciQiUC0oq4GxbG+gccaBCKLEgJnEGmcWAFywGjWHoxBJZ4VyQiiSY5aQbA5j1oor+yUZG1kNh+yp14MRg09nBwLqeHEDFgTzBA2gAgDvkUjCnhKha/1Zs0DYfRQ3o98rekRpVXXd1buq4GoVFHRgRQD4ghBZt20vS5sp2SAJ/QgaQvYPzQoeAF2dfI2CM1cZJNg9bv0XXd9jtd7i/v5fKwFG54M4JPUbR76ZpqpwoqXMuuSDGWRP7plrgSLp+tbbVmJ9vAnXO8nnSe0XUdUHKpkXniSFGJEnOl3PGq9vFT1381PfdTz14hH67PR8jkmPExU99+vwU43yuLu3ip2y9fNx+6tWRDb1ZBlZGwdXFwSwhVrcKWzea6FW5qrwMOFZIjfeuokjMXI25hNEihPqlcnQxy8IoWJ2UxYg60uu4FTfWLJJOaJAkdJGjGpasiXJ8Hu5mFn3203HA8XjE6TQKmhGa1WvklEl6WjS6CevJUsK7ZkzMoFA9/RNk0djPqNdT6g+WzdvZCVXvN2uYkpkk9OxdHXx7XV2phtgo11juRe+bM8DLpLH3Oue0wJFDCPK+GMU5BSJ48sjMiHEWlQV1grvdDtvHO2y2W7RdA+c8ci44nY64vz/g/u4OOWV0fSd0AV7xSplFlSRltMGjbYNJVIMLS04DWygxL5uLLKFW57wql8gcSSnVZCUbB0eimhICV0dAhIoghKYBgTQUrKhkVm16FiUaC0XHKLKwMp+VOpAyOBVwFuObkhheBsCOEHPBNCdM84TICZkZiQmxMGJOyMXoExkxi4pMKkmROVGOynqvbpXgKmtAeZfKuZQpYE6blrkOczgOjpQzq2tJXlfgiBE8QA3Ql4xd7DFNEbPWMsDKMBlqZQmri8dfaBc5Z0zjhNMwIM4RHMLZxsPuldSIBe+qikfhopximX8A4NlL4jwDlAnsg1AnsBhysR6LDSAQOpXAvL65QZojyEuVd++DFkk6R79ebiUXne9RxjemWrchJZlzcZZkYrExCyIkRrxU7np18Su7szb+NmaGquPVt/ZfdLv4qYuf+r77qZxVEWhpTqNSFz/1KfRTChCct4uf+iT91CsPG1c3D2DynDIxlsx8Q2dsMAR5KZp4FeBXURbrSFHZyWqAZcGF0IC5IISgMngJNBGCV0WKJFxLLgXeSXi0QBCsGCMYJhUoiTwVpVoZcnIAeZnEKSXYhPXOgZpGw08J0zjieBpwPJwwTxNAkkhmE0Mc2sIvrCfB+rMiWfBiiN1ymrTiRlCnQiQZCMK/BEDGv1uMvfybzxJ6SlkSm70Lle9rxsRQKRdcnSTkqOqJ21ity9xX4IAW/p2F6yQJSgxqjBHMBSkzio6jDwHXmw122y12uz2atq31FO7unuKk1IKsBdpCIxKMQkMIoKATmQUF69sWV7sd+q6XnrOCUYXBOaFkDVcWSfobxxHjHMEQ9RnnHaCJaswy7nLyF0cL7VdPTpxFkBoeXtVIWq1uLQoMqoUNcdwy532dz1nzMnKSOh0lJjHgJWOaZ4zThBSjjBkYY044ThMO44jTNGNMCXOSJPKkoX7jyKZiEnUZ3nm0arQJLNJzqoBFkAE3aU9fET5dqWotnNfxDkGLiilloVhY1gy/zWECe0LXNNj3LeLcYU5RUKsiRpHgAMrVaMqtiKNwcFVBJ3hFYMxBFkFkTc2YgSoh7B3h4AitSiNLomdSJyqOypA942bb3LaxgaKyvJrLthKd8+h6j02/kQ0LCYJWkUJby2Rr0ZyNAwUSRK0out2r7GdmlTSMGE4jxkFqiBgSLXUAEqxOSR23VXs5VF2r0Vty5ofY50uTdvFTFz/1cfip9WHDkdjWlC9+6lPpp1DONsJWOfvipz45P/XKw0bbtnDkkFLCpIU75AMd2rY547ISEdpWs+WJNApGSwIwLeEz6CnVTlXznHUg9AE0bGwhZABo2hZ93lRDTLRIfLI+LLMhSYLQkBMOrpxGvSBOzJinQasfZsQUMetiS2okiJyqeri6ES5FE7MsFAq1yWLJl8lDyj9dnV4lnKcKJqQ8QCzPtg4XmjOwonGm7iAvUIOGlzl3Cz3AieVVRMFXtYEmiOJHpb+UAkIB1PmZKsuCSmWdTB4oS6jMEA3nHK6ubrDb7dA2LUphDMOAZ8+e4f5wJwmVKYnPoiXxsmmEE7m/ucY8Dog01a4LzuHRzTVurq5ALiAVgFBAhZByREmiHz+MI27v73F/OGKY5iWhzOaAPk/OSRDHlDFOI+YpopQsCYE+YN93uNltcb3fYr/pses36Psefd8heA+UjBKjzIcmgJqg1WY1sYxFFnOaJswxIsakP0dMccY4zhjGEakUxMK4jzNuTwOOU8QwRgwxYowJ0xwrrcE264AgZI5ZkraDRxMCmuAFlQ3CFfWrjZRToyQGYVnHgvjq3CSCC6Itv2j5Q+R3uYjj9gCzrB+jMOQsYeoxJcx52cgsfFxdu1lUQ0IAPFTVJzhsNj32uz2CVnOW92rSIAqIWOktwDxFpFwWI12NLVX+a91UObU/+vkLl9TQYFle3ryF2GyYHOHLofUPo7hUGovWJSmaSMu6TgUxTogxAWA0TYAjySVY1rhSFwxdPBsgw/FQ7Y1uP4UK4y5HjVe1i5+6+KmPw0+1XbuaZcvhIbj+4qc+bX5KD93WrL8vfuqT81MfQaPK4JJgOr8LksFnD7s2IkwLovRyuMWkBAHhlDaNZPWP44imNMoxlRCVnKxQq39u805ed7jH8XAPTCNSMo6t3FtZyZuKu4kgR8glw5PD6XDANE0YhxNiTGqYgiDsq8EnByBHMFt8lGs4tNJFCGd8VGtuLSUBNeDFpE5FVaKoGV8b1GVQDYFjmFyrukNBnWCn9WVWVv1xRcssVNs0jVS4bVs4v0hA6jSuSidU+bNy/cK5VmwVo7c8nw8eV1fX6PsNHDkMw4D3n38gyZFRHH2x+RACHCw0KggPAGz3e9w8fITj3R2m0yhoABH2my0ePbhB3/dViSLGhGkaMZxOGMYB0xRxPA24Px4xjBMKS3LYnBKmKAjSMM2IKpOX5owpJqkSrouj8QFtE9AGj13X4NF+j9cf3ODR1TUeXO/x8OYa200HKhkcIwBCcIQQGlVcERRjmicM04jj6YTjMOJ0GjHpZ08pYpwT7k+DVOROGacYMc4RcyqYc8IUM+KcEXMEazVg5xwaL4a6bxr0XYe+Cdi0GgmiBTGs+wdaNv5ZCxIuE5MUoTT5YAJHGYumbRQNtER9mwOLI3AkiY6bLbCPGWPMyBmY4lw3YaW8hH+wKXsAwTs0Xiv3Eleu6JqD7pSq4rwgralk+KwG1jOcCwDp+mZUaUFyruqEg3StwVDjFdKrNoqXH0BgFCxqNmIsSVFUWpTIckJOpvZS6ppgW8tsco9c+f3UtnXd101mUW3yYcQ4jsilLBs9LMjZmUEhs5vnjvLSztvFT1381Mfhp9p2OWwwMzhnOFz81KfRT5H6iLN28VOfqJ96dQVxLeblvRUIEiSmacJLiXU2V5YBXXNNF33txcBJCGjheuWUQcHOSVJzYbvd6ilSOrHRap9d3+F0OMDTAcMwIOkiIEVL6OwZCCVl3N3eLqdDtdeFC8ZJkPW266o+N5eMQgSyhaKToKwWB+uJtZ7ybKKUgryALxopU23jFbAkr7dJwcBL5VBqJWY9LS8Hz2Xo9XGlr9WhFi4glokdvDgoCd0vvN91cRj5rIycCaU4lJKQsyArQiEoVZt5Gie0XYcQWgynEafjEeM0IaYsSWwkIU7vpPAcsWqvAyhJnFhoGux2e1xd36DfbnEYbyEnYxIu7W4HIodhHHEajri7vcfpeMQ0TIhZEJU5CmoUU0IujJgjpjlKuHqeEWNCKQBlEXJoHAFwQJHQ6pwiChfERIhxwjxPOM4DTvOETBndrkfrN/CtQzE/7oDEGT7JGM85Y0oJp3nGcZpxP064P55wOJ4wxiROJSUcxwljVMOtCWwpFTBJguGmadC1O2y6Brttj/22xb7v0XcturZDGxp4Z0mSgrCkJMob0yzo1DzHmpSXS1KkgutMW4M6YuYYJTPiLPPF6QbAabxYNmCoRkaoFIyUt5hSQsyiIT9FCRvD4ZxHSiuaA4Cma7DZ9GhCAEM4oSXnanC9KuRghSird9LN2cLVdb6AyKvRD/DBQajdLPNY71WMsZfnYa6ObrlFB8fn6EwpGcM4YhwnpJQ1aVU3nvZ8DIBJteHFEHunCLqidyb9WFQVpJQCV8S2CG/fVYUZW7d1oM6MwNKHeEkh5NKWdvFTFz/1cfippl0K7BEIxJJTcvFTnz4/5fTvZ+3ipz5RP/URhw0CrIaBhhdNIhBYkKLlRKpYhC76dZinFClBZjfqSoF3gmo4cmdh5tPpiBcvXmCz2WC/36Pf9Kp97ND3ojKy7bfY765wf3+P0/GAcZLK1B8mN7h+HkGi9J4hiXKnaULmIgbKeZCqR9hC4DqnXuKwqWGkswGQiWH2Xvi/ZRkMWEjdlCnOubS1L+36OhlkEvszA75OFsxJMLIQJORYZdtW/V85hHYyNpUUlolfSkTJETkLpzPGpIZZVBmOpxPe/+ADvP/+B9hfXdXQfxNcRRPNTEA/O6eMlKIY3Jxrkl7Xdeg2G/hG0ADnHPquQ6Oc6KfPnuPp0yc4nk5gTbRbZBAZwTuU4uAJ6ILHzWYrIXjvIMp5WUOKkmA4pRnDNGIcI2KKcj3T1PaCPsxxxmEccHu4AzzQtY0kZoUACg3gCDEnxHnGMIlxnlLGmEv9GlLCcR4xThFTElRoTknQq8xgSIg+aKi57wI2XYdNG9BvWnRt0GKGHsSMlGYkwQvFGRZByGLMda4H5+GDA/uAwq1WKZc5lpVjC3Cdv1bcr0A2T6Wo0kkIsMRCQ3wJAHkvqCx6zDliTrNWNmbMKZ8ZcpufNaGP5f6apoHzDiXLHKnGTOcxFxYn6RhEoSaHsj0762ewqJ94luRd4VUvyGst3ugYxZXqkOTe1ECpoklmRk5REMnhhGEYhFZRshyKtzv0m80qQXihpkii37r6qn6+/UcAO6GpOCqAYzRM6DtJvpu5KN0F32u8a2MwRIbyZVDu0pZ28VMXP/X99lNWNHHdhyBCaMLFT30K/RTl8qE29OKnPjk/9dGHDZZwkIQ/V5U9eeGkWshTOKCGEJFUW64ydnRmdAA5rXrv0XYtYpz1KyJGCWMejhGH0z0cJOu/73tst1u0rZRHb7uApg3oNj3GccBwOmIcxJjbPUpXSHdUbpzdE5bQ6TBOmOeEvu/RNUE1q+3EJqdXR3SmpmFqIy8rhxReyYetJ7YurIW/ijr5gHPtYlZJOQDa7+vJiDPpMTt5hhBq4pgjCWeLwoevJ2/hiDKIihr6NXIkE6skWcQhmKJFxjSNmKcJ8zzjdBoxzzNef/11hLYFq7wilH9qSXbVkFbn4dCqg9lfXeHho9dwf3ohp27vsd/vAAKePH2G73znbZyORzmNh4CubdEEKTjXtiJV2DYNmqbVatfC20wp4nQSvfnT6YTTOGKeZdE659G1BdTKZiQ4mT8+tFrFtkW76UAOmOcZIQR0ISC0rTgs3VxPKWGcoxjxnBCNJ4mCQoQMQiwFqYjiS86MOWbElDVJjpRKEcAlI8aEk3Noj/J5TSsGPmiCXFXj0KTDog52VpWJokldhQE44z57tNpnvgmq2y5GTNAfxpwzYhEjYfPN103Egv4SAQ4yDru+x6mXiq2pADELnaG67tVbuToSCc2mGNG2TZ3EzqEqBFXai1Mdc9XeN/6uLQ1DSUHShymVhS/rCMxOUV5B9qozUhhFfWQAACAASURBVEObU0aMM4ZhxDCOmIYB8zQjl7xCvgQRGoYBAND3G/ggIfVUlN9ttgOG7paKtomtKeY3Ae/gCqOojn/XteCcMZe42Cj9tya/AqK0U9f95bjxu7WLn7r4qe+3n3LOIfhle2Q1WPq+u/ipT6GfSuW82Jyagouf+gT91CsPG3YTFp7+MH7r+sViuCyUBOW9SYefhbKBleETB3E4HpCSagoHD7DKialqQowJ4zjixe0LNCGg6zr0fQfnPba7LfpNj/1+h2EYcTwccBpOUmBJP+eMw1qN+ypcBSn8NJwG5LZB37Yg5zW0hWVm6kzilUE2I/xyEqB2Yb2+9JmE085On4rGWRLTwreD8EkVeTOjL7fE9brkqPIJLemONcRnlV0BQZNS0qRGOcsCMBk7SbpC5eXKGIp8oSa1waQfMw6HAxiMhw8ewjcBJWWUskjs2aI0ZMYFV/m6OWcJmxNhKqM4f3Ua4zhgOB7RNQ0ePH6Mbdej6xq0jUfXeEGVVLKSQIgaqj4dTzhNM05jxGkYMZwGQQLGEZMu2GE8IcZZkQxR9mjbgN12g6vtDrvtBiUmUGZ4JqQQkNpG+lOjvdIfMg6pmCY4205Bxly6r4bSxylhnqUasKED80xSFdZJIaHtZqMGm1GGGcl7hLYFOcY0z5iniGE4qayebJZApO8xLWwGZ5E7PA0jiI7ouw5Xmw22fVuVQQDAe4YvHj6LDrtZXyYGkXBFlTorIAsRgvNoQ4O+7dA2M8Jc0PgkuA7ZZk1pKyqRaVEr59UxMLAU6TK1D5ER9CqPCXVGzls1V1/5r+vvDZ1dSyLaRkiMOKsTLZjmCeMwYDgNKoWZq41jrOk0astKqQnHzjkELpXLWxVfSBJzqY4729KpP8v1VOpRD9V91wmNJRdBQxWhq2tmZVX1Eet6v7QPaRc/dfFTH4Of6lYJ4k3bwTctfGgufupT6KfI53pNswkXP7X8/En4qVcfNiAdzowlSUYNwpLktSTfyc34OnjrTlmHvOrpCCQVHCETL6ckhUqcSMPlLEoUBYuxZAgqcTyd5AFCQN/3wrVrGuy8VHbshh6n41E4k1EUIlZ2vHa0KYWgmGQiEKO8tu+7qvRR12kpy3us0/WPNTTFy4quoNEKLasnzNVIlcIv/Y1VhYFW17IZoiHzUsDkUdPw1GhmFDgCnFPECQQmAjuHEGRSc+GqsyyfCQ1VZjmVa0g6Zil+ZDrcpiwRU8b93R1Kzri+vlYHEVcczEUvm+r3yyJvuxZXV1fYX13BQohNI6jPw+trPH7wCNu+k6JJzsF7CatzyZiGCYfDCcfTiGGcMcSEOQNjZtyfRnEwzEjzhOF4xDyONTkqZuGSpjiLLn4pCM6j37S42m1xfbPH1fUeV9dXeJAzivO4cg1CUC39lLV6LexYr2jcwvEsqm09TRHTlDSUvFJ3YNT10PgGRNqfpxEHjMLVJYJvGlEHORxxvD8hzbOgcySL2pEkA276Dfq2ReMIrSd0bYPgPZyTpLBhGgDO6HtzgOLAxLgyso6N3B3X+VRnJysi7FRxpGnQNw2GMMMnD68Sg4ApjYjMn/eCDsqGS2gli7EVw+6DV4nEcCY1aVV0nXOVmiI1DyzBVNEVDadDnyEzkFPCrEZ7HidM84yU4tmaW2yRLS+u64tWz8DMmKMiShVpNv45qbPSDS1bcqyuH5ZwOZjq3JdNlYd3QSoU6+apruyXUGZpjA/99aXVdvFTFz/1/fZTaysYQhClJ3fxU59GP4W0qm+h9uLipz5ZP/XKw0ZhrIKXqGiAdcCa61oNtyV1EWrCWcml8snWRlxOgAFt24l0YRGUqTitiLl6j2mlV7lByElxnmbM04zD/T28Vlbs+w7b7Q5932McJwzDCeM4qlRZBhvtg5cBAZYkOmbGFCWZqe1E07oaSV54d9Yn68Oc6TevJwSwoElLOMr6DVUjXpCMrM8bNNy2LqKycoA6yZzql5uTsG+dd5KoGAJAWiRKD8mOHAqVM3lA4zfX+4QqjVQjVbTaqKvqCpwZ9/cHpJyx225FyYGtONPCl66yauCasFSKJHztrvd1QWw3Pa72O/TBo/NiKEJwgJ7S4zTg7vYWd7cHHKeMUyo4ThEvjifcHk8YpglzzjgNEfd3LzAcDojjJM/oVYoOjL5psGkbdNsAznJPp2HGaZhxP014BEJsOpR2Qugi+g1AziGnhHGKGIYJ4xARZykiNWvy25QiJg0bT3NCnDUsTxADJCsZphLhyIFzwfFwEl6p92j7Dfr9FXZXVyjMODx/jlgIod9Ist8Y9XoETwwPkbDbbDbgXHAYTrg7ntC1HXZ9i23XAOBaQEroAdBx1MqkkArLGaza5MualpA21bUhhln+9c4hOIfilkJDHiQVRklqDWz6Hg8e3OD6+hptI5WYvfK1zYgLAnRuS7wLYuj0dWI3NDEWLBx9orqxijFinERBY1JefMkWctZ1Agtdr9Ec+1AnDDB9FueWAmzGJaasOuZeNe01u3TBnwV5c5pI6EiKeVW5TgBZJQgNpXKOvofrekarYbEPZy+4tLN28VMXP/Xx+Kmlw5q2wf56D6J88VOfQj/Fq4KeetWLn/qE/dRH52zoRW2hL3QJ0kI99lqn0dvl7wWmmsHIkIqcZ5xYCBLa9mLEc07qBAoKcjWoL3NoqwMpEP1i66CcRat6HOA8VY3m/W6P7XaLcZgxjAPmeRI97LycIHntrQg1eWscBuSUquzgYsiXwTGpRIbpsquiR1XSEF6tSRLqvNI/0eo96iCd15DygkQRUUWrLBJQOYv6f++FH+q9FKxq27ZKKopBRuXJWp86Z5NFEuKM5hRTlBlEVK+XSwFZ4tzKEcdpxug89rsd+r7DZruB8x7TOGoik2rRp4yMvMwpkkRKWbQON7sdHt5co1GkrCFS9GXG6XTE3YvnuL29x7O7I7775AXeefICUwYevP4afuj3fRaPHj/GDIe3vvldvPnmV0Ep4Xh/wIu7IzIInQe6QGibgKv9HrvtBuRkfra9qGyEJqCUgmGe0cwJt6cRhW7F0B8H0bpXjq/whEeMw0nC4HNaKsUS0AQt4EW6UFd64/MsfMxpliTAEBrsNjtcPXiI7fU12r7HPEfc0x3Guzs03mPfNQiQJPu2EfWWNgR0TRBkLRBa70T1RrmtORcwe4CkwJUUvGJBaFwD7zxYnbxjhnNcx902BiZAQ2DRUFfn6j0tyMliCGD/taHB9X6PR48eYb/foWkksc+r8oxb0SqcJoqScqWbEOBDIzambnjkM3KRSs05Z4zThGkcEOepPhtJp5/x1sGGYq458mu75uq6ykWS4xwvVacJimD5he/OJauxXlBdCScLp9cHD1cy4ijhcNI+dd6h63uQl+Jzs0pjrsxPRZAu7aPbxU9d/NTH4adKWZL4QxOw3+9R4nDxU59CP5XdImdt8/Dipz5ZP/URkQ2W5BXnYPUoSznnbcmvCaybSNLkKu11ea/39RQlXyvEhUhCaZ5EqYJZT2PlTG6rIkeaALWuClsl+/R1haUSYtIEPiLSsJbHdrNB22gV2HkWmbqSYUoXYFRum50Y4zwjp1j5wMBikIV/yktoiQGREdCusdAZA1Z9tYazdSIYguC9g/NN5cbW2BkbGufhIYa4VdWEpX+8GttGF4lMTAmjisNx5mgd4EgQlJgyOAvXuOQCHzxC8Mg6mbmoOgtkEYMsEdPXcGEIjeilK2IXmhZd18E5j5gS5jiD1fBZ8hfp3KgT0Qc8uL7CbruBc+r0koR6c8mY44y744B3njzF+09eYBgTXtvt8ODR6/jBH/kR/MAPfxa76ys8uTvgvfef4bXX38DjBzs83XX42ptv4emLe/RNi7YL8E4GmZwDMjBMI04YkQi46h7g7jjhg3e/hfvxd5CSJLnFJOog5riJRN2kcQ5dkGJGbQhog4N3Wvm1bdHoPMmFwYocWSVgkXtU7XwGwBnpeMQMgOMM5wMePbgGlc/gxbPnmOYRjoBNJ0hgGxps+w77TY/GO1kXjUfXCN+68U4MfCuhX6dzquQCBKU8BQcmEoPFjAamhANFChnsFNUsDKcJm3LfspaNhvByc46w3W6x63vQPGF6/hw0RXgnyaTNbof20QO4q71Wb5VQdRNEBcX7hSOec8E8z5imUYpTzRE5y8bHKB0VkQaWw4+hnyzO2jYqjkyz3+gnpqazbJyYV5x8VZlxRTnjupF0LgAWtnYWTlfuOght2yIrnz+XLJ8JqXYcmiC2hiXR06qxWvveHr20D2sXP3XxUx+Hn8qrQx5AkoPT7i9+6tPopyxUsAxnbRc/9cn4qVcX9TP+q552vHLizlAjNZoSQiGgFJiag4V2luS5CEA4mClF1VsWTWlbHPM8LyfapjlDic7CYGQZ9hYSsr+b0bOqscLzLJyRBMMCgdH5gNB7NCVXBKCY7rO84Sw8lEtGzvEM7WrbVgvoaNi4FJDDuRII1BByQcmo4TQLX7PzoEzVaS0Vaqsn0Wc/DwMSLJlRQsV+lRhJ5EEugLyvkpASkhS0qj6BziBm0Rz3JBVpJZHPAynWhLHECVkXSts2CMHXReCc8HELZ8yxoJyKFMNqW1xdXwNEOB0PsuCIAF44jFmrtzbBY7/dwAen45CR44wcI8Zxwhwzmq7H48c/gJub13AaZ9GZniI+ePNNHJ5+gOvHb6DdX+ONqyu8+823cDwe0HQtPvPGA3iK8F4qmnZNh+1mC2ZgmGbcR8YxMb55f4fp7VuMuSCqBjWXUkOihjacKcCsFp4hCmI8PXZdi+tNi33fYtM2CJ5AIuqO7W6D7XaLYtxcrXZa8ozTXQTuJYHSh4B926F//IZo/BNXycjgCGQJoDmKRKIMOYIjNeBCrwjBV2STIGHh0DQgb1z2ulcQTqw+FjulThDDqbpG32Zs2lZQVFjSn7TCjKSIGZiBOOH0zjugdwk0R7TO1c0JNQHdswe4/n2fw/b3fQ7dZisVhXWTmJLwsIdxxDSKsoxw8qk+hyNxQssm7Nz0sdorB6Covr4YcbvfXNFcWR+6dgsjayKpIGSNOtvlYGVrubCiU+ItNHlROjNoknDOshFhcxAA2hAQrq/RbzYYhwGnk9Bo1sZcnBKZa720D2kXP3XxUx+Ln1qtOVZE/bXrq4uf+hT6qbQOa+Dip/6/8FOvPGzY6cfVrPxlwFgRhVoQJFtBIJFSE91qKdwCFoQor8J6Ysilk8QYcf2SMFqpknqLcVqQqrOfNfy5cGc1LBggJzo9dZYi1+YCdRyivdz4oIWaVNc5i9HGir8aiocVqiklo21bbPpekoXqqbJUlQFacfVK0SI2UTWfvYTtdUQlNG8hW+aK/KMuELk3/ZNMQpV4FJUUX/mn3jcqx0ZVDWFBnTU8VxgOklApKJwUSqocXn2eswVhyFeREHzxOmkhvyPv6uIoXDCOJ/SbDbquAzlBV07HI0xu0jlCyjJHGIK8tU2jCwHgzKr5ncHOoek3uAot9nvBr3IB5phwOo149uQFDnf3uL29BYOQGbhWdYzD4YDOtfjcZz4HF0SacYoZz8eI58cT7ocJU8rCw2aufcBsy9SMtSI/L0lFLjxf4Y6jZEwzcD8UPFGr2HiHvgnYti12mwbbrsVGK8NaUqQgSfIZzBmcE8ps2tVqJLyDV+NQiESizjtNsnQgKvBE6ELApmuk4FLTwIdG54qqUoBAXhyOyYTWYdahto2VbmVATn4WiUePrvVovSTDmaEBVAVljmi8R+cCrgrgTwOKos5zTiKnFyPmOMPf3qIEj+vHb8Dt90gpiRrHcBIqgFYItntbqBlkq0KnthpYMqTVai0IIrdWzmEIJ3VBvXWcCwPIq/Wmcz74+pzrVkPa0PXu5C6NjmE8XquQnFMSFJbkkB0hCGJoHDoWQx9jXBJidenbhu/SPrxd/NTFTy0D/v3zU+uCgkU3ple77cVPfQr91KyF86zlUjBd/NQn6qdeediYpwnGxi6K/kiyVhIZsgLNZC8rwwqsk62MRwmWG0/ZjH6u5y7jiXE1XDJ5ck4ywR1B02LqfYBWMoUaDsraeYCFijRhDyxJYyRoDojhyfSOeZEJcxIqLx7wHAThKDLqDEaOCRKkDbi62qPvpcJoKXy2mNeDzcRgeOTkQQwNzbIql+gEcoCHXxnbpdkkIw0nE5GGhtdSa6qAoCFrp3rzoluuY6MbfHJBdbDlmbMiFayUgRIjquIIGMQMUTnXRcOSNEQIOsPUgaEA5AHnwblgmkY0TUDTBHRdC++u4LzH6XhQecIiKJ4V/PFiHKALSwyIzIkiXg0uiJNy5JFLQVcymkDougalADFnHA4nvLi9RUwOr19fYdd1OI0Tbo8Dnt6f8OQw4m6cMc4R2YwxM2hFKZApJX0FZhQv8x7qaKXPSu1DWesLBQG8GBswNEQvvFp3KyszeIdt22Lbtdj1DfZdi00btHgYiZQlbAywOHQBSCvyRyRIVROkKOKul6++ayUkbevEag9gbQxXmyNg2VjAPuPcyFVEFgxPbqlEWo29rEFfgN12i8/cXOO63wAFmHKCY0bOM06HI07HI9Icsd3vsXn4CM8+eIKjUkpySljMliSy8eoezrnxy1xdO9faXbxIXJpxXlCf82uyl3luKiLmx50TxQ6vyKj93saenIMnoYPUNWyOv8j9N02D1LbAHBdEKuaa3Sz202QVvTgvtZOFy2pDd2kvt4ufuvipj8NPrVUHDBC7ubm6+KlPo5+CHcyga0HswcVPfXJ+6pWHjWdPn+rNrjWp7QMXI+rc8gEWmgYM0QHiNMkJcZrEMHMBF5Wna0Kd8KVIGBv6MKbLHZRLCwZSKbK4V2jOOoQtp2INXxPVUFuBdLZT9IipQAqrMIpnsIbQS4mKoiwOwinlZywFFEVqcLfbITRBQterYkA2cep9OQDEKORAhZFIE88YAElImplRsJxm15NR+tQrCuS1fwUZC96L1jsAVkSPYQ5MJxWzVsMsAFxNfiysWvNcajyycorte3WuhhUyNLGwiGzbmcJDUcMToONeMI+TOJMQwBBFj75sMJ1OwDSB7w/wty+U0uA1+dKKAglSAiaklFdJVTJPpAqvUB+IHLo2oGEClwbeXSEEhzkVvP3sDr/zzhO8++IOpzkisRo/LAbMOaizdzDDCZLXGD/S1Gqs4JUZcDEyJM6aF9Ow3shY7xGA4oQ/OseMaT7h+eEE7wjBEzZtg92mx82mx1XfY9s36FqPxmlFXr2+oYbBO7RNQN+16PsOXdugDUESFxXBI6IzukRh5YXC7LWunbVxUkNXWOUGDUUsKyeuSKMgm4vxd45ws9/is689wMN+gzjPiLoZyCliHgfE0wBOOreYEccRx/t7lK7VJDZajZGhQitkh5f7s3VvqA0rzOLc8t7FJhmHXVBj6PqsFIuwKH0YYstZ0e+YAJbaCk49qEVzLAHZ5o3cpN5LLhraF8530esRANH7lzVMTopatW0LsPDWEwklpGRGPpMgvbR1u/ipi5/6OPxUWOfixIiOC66224uf+hT6KawDcHpfFz+FT9RPvfKwUU/Betqqp2A7pXEBM+ngmuHRji4FUU89RIIcdV2H3dVDtE2D4/0Bt7rRhJ1YcwbnAtZNTFghIgTAsAoLuC6hasBgCENH1ousoiVYDE6deUTw0AlblucuMQOsRpYIc4wYxxEhNLi5ucF2uwWRGBhHbklOI5FSY2at1sliKF1BaMQxlbxI+Nm9ilEVDfGUNYxti6WGnj3IB3jyaBr5cqERNEA/14y0LQQbFptogljZTJOEq7xC/bBCqRlAyaJ4kLPynbWVInxX1Hs0bWkCyIFLwTTPCHODvr7OoW9a7GlE8+KI4zvv4/ZwB8cLyrac7hdD64NHZjHkeRbEMc4i7XcaRsR5Ei4pgFQYd8OIN995ht/+1jt459kthjmezU+GExUGZyoOrprZyutmgCEUiaL0i4qWrvrBDGGdTqD6PesmBswo+mw23+sIESEzI8ciYfPjiO8SEJzDpmtxvdngetvjatvhatPjatNJeLtr0TcNuq5Bo5VXZfMi2uTkXDW2y3jb86/72Qwj6QYN1XhXfnjdyIkxMedkm5sYE1ISNG3Xdfihhw/xxtUezgmn2IqKoSwFtyxZVea/zD+CE+Nn5rEK3XB1HraBBFCdlIE0oGUTKRxxHR9eDD0Tg9hVpwsWSoyMibxnjUjZpQsX5JJABXAa7pfP1Bojq/EHnSNbgHDN27ZBShFxnmTTRw7EhMKyfkShx6HtOszThGkS5RJiwJeES/vwdvFTFz/1cfipLS3UnTYXPGga7LuuXvfipz49fkqm99Ifm7bFD+13Fz/1Cfqpj5C+lQ6wQQQ0FMsLb5PPJrcYiBA8gg/Y9j12V3tsdjtsNr2WpZcQ3PF4hH/723j69EntZEFeUE+5IIcCLSSkIVPQci8MVnTV6em+LIk5TkvJK0fNDLid6vh8XqujUT3hUnQiSQg2zhPG4YSmafH64zfw6LXXtFqncnpjFI4bsyavycVz8ZAKj8IB9kzwroAD19fDqlOS3FdKUoF2nudqHA0ZsnB01/XY7XfY7jYg8hiGEfMcRdPaOQStckoO8ARApQe9c3ryr6sV6/AiEZQfKQ4xRVHoyEolMPQIkPt3OcMFX/u2sNIAoCHxoqiRE8k4LgzkjG6csEsRTdvg0c21LDoDtaolKQABwTeyAHyD0khfzvOMESOsWvWBGS8O9/jm+0/x5jtP8O2nz/HiMGJOy8S3xWWVPoWPa5uAZXNg88H+kYWsqEtZsDPY3xTCWSKI+ndmgJwyJwSJgCvVEPIK8TAbYBxuZiDmgngccHsaQE/FQTeNR9cG7PsOD3cb3Ox2eLDbYtc3aNuAoMhiE/wyZwxNUcNSzW01UIKYiQOTWzcDXqvylqIFleSeY0r6FZFixKzzHwAebrd4fb+FJyDlomH2AqtVwIVBLmmRtNrLAKtRxmLEhWrHyrm3TZJJYspahb6H1ldjSzA1BLBU21GRbiZbFvo7DxcW4w17PXRNQPXvSbeQtErSszmmjnTZRHL9GXqd0ARglM0anCUBOjRNi9BIBeCUEuLUoVVDPg1DPcxd2ve2i5+6+KmPw0+FFGvX922L1x7coO3ai5/6FPqpGCOyb2o/32w2eH3TXvzUJ+inXnnYGE73kGObIiDGYy12wkNFMvq+Q9f12G632Gy26PoO/WaDpmlk8WiFTUeCfjzqe7RtABHw7OmzWvmVWQbfpYziABRXs/6xnoxcwCUjM5SCY8VwZCi5MCIzPBUNVWm4XCeMGU1bfKTIlBUtYj0JT9OIYRzQtB3eeOMx3vjMY7RdJ6FKFDRNg9J11fC7enTUE7Ym00wEFC+h35IzKCXlewKw6o5OFDQsNFxY9ZVDQNv12O+vcPPgBvv9Hl3XCZKSCo7HE47HI1KMFdXLRdA3QTMcHAnPNKWsSYIZJaca4s1V1lCoAIVZETo1Lva9I5CF3nTVCN93hdBZX7PodDvn0HWdhr+B2DSYCZjHA7ybdcEtmvSOAHaKqqg6CTcLmhFjwtiPOJxOuDsM+Mp33sNvvPkdfOPdp7g9nXAeyaOqimGqJLzalBjisBg3rOYRaVVSCdcvL9JvaWX46ewv+v9Sdws2b50nTXq0RNCyMqjFACX9cvVauWSkuWCYZry4H/D2kxcgSGEibxQORwgkm6hGJQ6bEBAciWHXL++sIJCow8j7RZ2kUdSvFlLyisjQgjTNMeHudMLtQRIXY1q4mvtNh8YLWuVIkBJZnwRiWQOsSYQAqyzlUpgItDy/9N3i8AiKhpFXp+CrjJ8Z3uqY1KDWDV8x/rlcz0GoMUb5IKNCK7pX1Wh0Hjp7gY7z2vnrTKm2pX6mGnJDBslJJd2u34DLCVwY8xzB4wwQoWkbtF2rxt6DSDa+fdsjlbNJfWmrdvFTFz8FfP/9VPJLZCN4h5urPTot+HbxU58uP3UYJpS2r/2yacPFT33CfuqVh43TaZCbLKpgoAa4bVt0fY++k7LyXddhtxPj3batqBFoB1uTjHevJ3bp+IfN6zC+7LMnT5ByBqkZZAtbawLWktSnfLaiBkpfW9SQlLIk5cGWGNvJX8OIaqCWhWx6wzZ4KmmWI6ZpwmazxXa/A3mP02kE4NB1LQI1im5ZeNJQq1ST1xbnJGgHM2TieKdKKJYKhXovIvcWQOTx6NED3Dx4gO1uh36zQdu09kJZhK1H8NfYbHpFmqLqk1NdEGCSMHPKshizhh61bwovJ2pB55IuQguLl6pC4siL0c5LGBnq8Ngt0JMcrqUfY4wwXfsCxhgCHBiH21uMfobBLt6p6gUcGKqUYCtaD/Fzzrg7Tfj62+/j//5/fgtf/Orv4FvvP8NpimsbK/3oSXWqlzDmMuY64hVqWILyS7hVaRjrREQyw89nn2cbjDMe87LG64/rv4ux9JqrZ1SQUr8XtYh6ezrXDJESG5eKICpzTIq9rD3SS41Q+7OGZlcbI+8kma7xDk0T0LcNuqZF14pqSAhSSGqcZtweT3hxOGGMEUTCsQaAxkmBq7ZthV6iqKUjL7J+/P+y92ZdcizJeeBn7h5LLrUAF7fRC5ce8lDib54/oUc964US55wZzZmRSIkjkmp2N3mxFqoqt4hwd5sHM3P3LOCCLxc4jaOM7sIFsjIjPXyxz/0zs88YCAtMCaNbDejWK7i+wzydZF6TxqLr+HTBo6cOrJsdZ0yNo/MNmjE9wPm4KjBLnK1WDy5SnToHdDyzrgMd0WY+WRKvjGRx7+tBud0gymbOnf3O8jqdE03zuERMWjXYEpGPp6OApybOhq5D1/Xoxh7hRwf1cl1w6oJTXwKnYquAlDPW6416MOiCU98YTnGMyNfFsCNccOqr49Tn62ywyO31fS+nmX7AaiWs0GazKUoSoevQhQ6W6AUHBF+NuCWKmduzxGo6j5vb5/j1/yaT99Wr10gpYQheJ7IkyDCaPyqX6QAAIABJREFUTtfx8bYIoUbcXndOT5+VZYKeqNEsoJwl5lQWZyoT396xLAvmKWJzdY2+77EsEfv9e3x4/16AaxwwDgP6YcQwyk/XBR00D0fCPBFJ1U2A4H1147N38EGZMWUN7PR8dXOF9WqNzdUVNpsNvDFZuTI74o6vbrph7DGOfQUtm8k60ThnxLhgmhccDkfsHxeZRLEuKFM3qEyFjRMh+AALARCjHwVowfX9ZiAzixa2WiCTSPPeC/ORM3w/grc36MNRXb8QbWuSOMlS3ZblOw/zgt++eoP/++/+Af/Hf/07/M0//hZ3u0MJ3zE2QxISg8osunJqPzOudWXqIjd3qN7HGCJdmGpWy4KsTIFaUjIDbVOMy1yV17O+Tg0bBRuhAlJCSvjarmwbE2lFBoAsbXX2uabdBpzWHv3G+p3ahrM+sX4mYGn6A1zvT0BhZgpzojdkzuh7kS8EgL7vMM8Tpv0RwzBg6AN6rRrrvIfrOvDQY+GEfhiw+e473P7yl7j5+UvElDGdTlVuFMKY9n2Pvu8A0oJqEAlLr8mobZcaE1dYQTXeTpmxwvCQ9UvjSoaxnpA13NzXQeJrHVDi3q1PGXWs7MqUS19ZHHpmWRcuePTDgGVZsCwTmDOct5j4jGVOmOcJgFRbBrEyl5frU9cFpy449WVwqoaE+K7DOA7oPKGjC059azjVo7XPhK4LmA+7C059RZz67GHjZ9+/xDiMGAY1WP2Avu+0SFDQxVtvnmJEzBldF5BdBkfWgW2qtT65nA+4vX2OX//6z5ET49Xr15jnRQqGOYJJtEmWe6suYoZD4gvt1Cstqu3KLDGZWQ0ZZ3O6qlFsfJl2Ko9RCgRttHR9YWLAyCyxsXGZsd/ttD0Bvg/ouw6rccRms8UwjKW6ZHQy4ZYlgoiRI5AhE6sfVui6oH3bo+sCvEoGemW9Miu7oHGzssZI3H8Wk7uIoQwqNShPyIWdgw9aRbXHOIxYr9bY7R5x/+EOHz7c43g4ICWRTCQn7mxyCgKQhW4GXpKWMpicLhitymtA7VBYlzYBiZSBAhHizTX89y+wyQ91QWkCnICOJDu+v9/hv//md/hPf/N3+M9/9w/4/Zt3OJ7mkpgo48YgyLN3XVfn2pndpvJCeTnnYnRz8zYiqFdZ3umIwM5iRam0k1BZMmOUbKMg/VNjTysrdM4y2GcLCyQPr/0l/S023sEYJ9vIFEPVPmhjeO1p6/v0RWdBFPqwTRJawboCENquT8hmkiN03mE1dFic/G61WWN77XH36i0O84zU94hDj9U4gIYewTuEMYD8CqvtFs/+6Jd49ke/xLjdIi4RwUs1X2NSjO5xXsI0QnCVFbZxaJBRmJsMTiyMZ9cV21CS9AgNiHHZAIIIvkkKrWMDid1lKKOMMoblfQryLZiW8WZILK3cEAzAd8IKTzOBU02y9UTIlEsys9WHaJMbL9f5dcGpC059CZyiNowqBAwhwOkm+4JT3xZOjcHmqVzjeoWrQBec+oo49dnDxp/88R/r6VvLyJubD3YKZlgyD2cpbCNxalI+nVkK4XDWCd0s6Pb07LuA2+fP8afp1wAR3r55i5SSaAKr0aruIFb1ouo6JBJGyXSAOWungwBk5CXhNOdyGpRTZC10UhcgsMwSl7ZdrUHO47g/YFlmZHCRKWSuC0Vy2Bak44LpcMTj/T2ce4uu6+XEPAzohx5DLxn8CB3gAryTBLrVZoN+6IXRIgOlVDSy5UQr/eZDQCCvBtWkHCvo5CSFqhgSRyuf8QqiBK+GnIgwjitcX1/j5cufYzpN2D0+4P3dHe7v77Hb7TBNx8L0AKbqQKoewZosNMB5ByugJK7CWk2XbdIWVkYYBXgPXgP998+xSmJ0OYmiCDPjNC/47au3+D//9u/xn/7Lf8ff/uaf8LA7FJe/3T+nBFYgC6GvxqTM9wokNvCs2WV1STxZHGxGT35nBrB+ypggYxi4zAUQgR3Uuj5ZTAQQ2/dSWTdPvlq+n7iA2VP77NC4VcGFSSwSmylVQ06GSGjaDQGvph12CRsINUVP3O8NY2Frz8GhCwGrvkd2S2nkar3CabXC4XGHeZp1MwFNDO1EX7/vcf2zn+H2V7/C6tlzAEDQ9ng14lY8ysHUOwjZkhjJ+qwyfva8Ygt0zrqmLyChGFItOjWShHJv5x1IZTKlLytoZc5WyBhAjbWFjoPZEnGps6j5sNi+HLMk2Xmn7QNAHsNqwLzMiMuCmHJRNHLkQXhiX+ly2Pix64JTF5z6Ejjl2sNG16HzWs9C639ccOrbwin/hEi44NTXxanPHjaurrbSIbDKhrl0FJErGt/MDHgHp+oewQc9LUlyjZm8ljkgPbWJqsUR+8dHMDNe/vzncN7j3Zt3Gj8prAV7X1yjGRnI6vbM4sLqvJy2UsqSMFZWAeCcGT1fTnBgcUPKc4g7PC6zsA59D2bGcb8TRQxjosiVCWuLtp4OUQxAjBHLEnHY72QgNPHs6vYaL158j5vrG2GUvNOB1ZO6MgYyYVtlg8osmNuWqBp3iWMMYkCg7jjookwZEbGwV8ZAlAnjJN5+s93g+5cvsSwzjscTHh8fcff+He7u3uOw3xWVAWOrbInrgV7BkJBiQiJLUjMVFpnQOWf4ILHUuQtYrq9AUe6Xcsa7hx1+++oN/vr//W/4q//nv+Ef//kNjsusg1WB1kDXB48Q9LCi97er9pm0o4xP+W89zVNZjLWfLdYaCvJVu5zLBqYlYYokY/mUzQdbiNUI2utlF4NiG9D8pxpUM8QMYUMsUVNfF0bLGFScGf8KRtz0ReHa6lttbtWPVpapYfLsdUeE4By64KTiqMZ8T/OMmFag4Is2v7FNWWUBfQjo12tsf/4S62fP4Z0vWvkuiP2wmHKrDeCdQ3AemRwytX1dgYwAUQcqv7H5WV3QpgRUEvCcuJDtPtRsOsqzsyqyZK51DbQ/ZOq4+m+dR8L+QPXis4IANb+HhvtELPOM6XSSorCwcI/zQbTmXK6PrwtOXXDqS+BUe7H3WGICTxNO03LBqfqfbwOn/PlBY14WRAoXnPqKOPXZw8Y0TcqsyI9U/xTmyNyiOXN5EFMbsE4EKdvDqlus/56mCfvdDg/393h4eMDxeJAY2GHAs+e3+P7lzzCuRiyLGg49OeoSQ8xRYlXnWdyyKRfjAmjyjC4AAYvmtAuUOE1SY5SzVEgMXhLpLBZPDL8YqNbNWu51Zlzbn4xWBnEcRIrw5cuf4/r6RhOYGMwJKfHZ4q1kg8Wl1kkoCTqLuqs1uZGeAGxpWxl/UWZQiUJR8aCzgjAGRPIzIIQO2+0W3//seyzLgsP+gPsPd3j9+hU+3N0JU+NIma1Y3OFqYkQFpPR9DRVIMcmc0jjpyXc45A4ZwOv3H/C//7t/j//y97/B716/w3Fa4KAKL2oEWCd4CCJR6Kg1IFyMWptUiXZBQm2hMYeNES7uY9QQiJSTSuLZ6NSFxQYmjbE0Y2gDwAyZA5847ZdNgC5qczNTmeVc3mgAXz9bDbEAWwUPFKA7nwf1nnTWH7lhfsXYn3+mvA+56LoTEXzn0fcBYyfJdVD36XyaMe2OiPOi81NCELrQib6993A+oFttsLp5hm61rv0BZXw8wcPDZ69sSip95Z0HkGBVjYlY5CfVHtVn0fVfAIsqOqLOd3N7OwOjimA6l+UlAQnd0Gnyo4xC4yLXOaGkEcyF71Ar2JKhYRa70vcjhmHGPAlzxOyb9WTr3OEcKi9Xe11w6oJTXwKnjEABgBMD//juHr/52/8Pf/P3v7ng1DeGU0Pv0ehAYJklL+iCU18Ppz5fZ8NVhQSbR6xH0pyUqdEEJ5Bl0dc+A1AKzcQYcTjscf/hAx53O5xOJyzzjJxZ3YsyYPd3H3B9c43rm2vs94fyINbpYszEiItbzoxbFuPMLHFkOcGKtCxLlIqwOZcTZVK5PWMhvJc8+nmekVOUwdcCS0QfS5RB+6L0iWmBq96zLXBjx06nI37453/Gw/09NtsrrNcbLY5SF3FuDIaMtdNel387IiRApAAjEFVarTXi4n6We7Txx2aYACCmBI5R31MBqrBPCsTOOYnNWxYcuq7EHpZEJi3OJICeYUWEZB7XmGWy9eMgWtgpITgJp3q/mxFzxg/v7vDv/+o/l76TEAcWfXzOqi3vK5hSY9daALW5x40hRP2dnf5tbMx9aQZcIwL0dTEMDgxqk63a0zzqd1qELGAbBYuP5Pq6WHYkXUdPNwafumzNFZcoqpH+sasF6Go9CMxZp5V9r0ObSEhUDVELkrL5yeCUQTCZxiDVYL3HwR8BANPphOkUQCyVeIP3kkC+GjAOvcoHOvTjgGE1ls1g6UkWptmRqX14ODZUqvKBokTDJQyjbKhKn+m/9N6VqclwRMi6Ln3wRe7UhrWo3pQCTXarjByjSCLqWMiS0o1K2QgAslLV2JviT07gnJESI5qUZ0xYllk3BVp8zVXWiLNIgOJfGe//la8LTl1w6kvgVG7CU3bTgv/wN/8D/+Gv/y+8ff/hglOfuP6gcaprwqiYMU8zJg05uuDU18Gpzx421ptNqUhJUGPrA+rRS41AOWzZImYs84LT8Yjdbofd4yP2+x1OpwkpRe10S8YT961OMUynCXfpA65vbrBarwq7IIZF5MrAAALJw1lrdGEQINJ9jR46wNWAqesYLBM2MUvCYEqIywKwxKQZaplSyVPjXS8bPBQGTdggmQhBY+tyyjikA+4fH0D0CuOwwma7wfX1NbbbLbquqyddW6ysYMO5AIhzDq7vIN5TAbDT8YQligta4mpD6WMDEaKP3bcCiFwYAjP0RITpdMKHu/d49+6txsZOOB6PUiTJDL5zzd89nINMUgUVTgzvGNDNgPNeit8siyRFqWyabRJIT8ZJUBis8bXB99pe6CIvywPGcoC5uAGLwVRexdgdQBMYyen4GzCjYflys3lBYSDIO1BR63g6/tyAcDXOYjc0BpVZGQd5zXFj8J9aZDKE4jOWg6FsnD1Ua6hRv6sAGLM6HLi5NRltoc8GwPgIoo/QofazbiV0HRmD652Db4z9khIyAf04qG56h2HosRp7hKCgGDqsr64wrlfwnpAjIzsHKDMMA1yqGuttqIZzDln1zmWDVZVHyICUIfeTv2gH8hNjaO+tTBM5gmcpnJSSrFsz5tZvxkTJV9hcharwaG0A+6/VBjD3vK4Lq1fWusLJOfl8zAqs0CrPP65dfrkuOHXBqZ8ep2qIkn6nd3B9L0m6F5yygfimcKo9MMWckB1dcOor4tRnDxsp14JITk+IZnhlDjEYGWCHnBLmecF+v8PjwwN2+70YFy3g45zFo1XjwiyLKjinLi6C99IZDw+PAIBBpbcIhGEYgdCh62qcqBiFVIxDzhnkUomtszg1R3qaO83gxtnDKWKeF0zTjGSJZuVgToBm4DvVFCbSeFtzmTkAWoTFftp4SXI9QhAjRHrqTzFiNz/i8fERP/zwA7ou4Pr6Bs+fP8d2uxUNeII+lzEx6mojW1AAk8gQDqsBXRZGx5Grrlyo7JrGitoiMEMkY1sVWOZlxuP9B7x//x53d+9xOp2U7XGY51nHQSazGbjWnWvAgOLaV8k3/Z1zBKexxTlncIzK3MniI6q65d75kgQl42wqCwCrq5Tt32o8S2JeWbT1mY1Fq8wB6WdyBd6cANQwCrF3BGaH4BmcXaOnzwXk8yfWGOvClzGTZ8gmGO9wdn8LMQBQxqKOMnBWlKfsnxzMTU32Vvtl43IWPDBDpW8pkwFAkd7UO5mhUzSomiJNh2qbypx2jeqOc+i3azzbXqkePRDIKh6LceuHHqvbW4Rh0EchOAayk/WWcwaczl1yyC6fgYn3DsweyLJQzxijbBr83PSXK3MeBC341XSXjZNtEqBzW0E9pYQYY0kENCY6Zyl8VgBGx5oNiJq+NvUbQABQipbVPAFjpMCVxbZnrqN/uT51XXDqglM/NU4h18ONDAC0Foa/4BS+QZwypcvyC4d+u7rg1FfEqc8eNryexCRBq+pBQyexJM1NOOz3eHx4wOPjDlH1hStTUxc4mOGteE0ZFMmIb0+9ACGlhIf7e1zf3CClhMeHe/T9gNtnz6TaK1fnYzWe0hFdzuX0K0k24irKKaHrpOgLASAvk2C9WSPOcylrv0wTpkmMlhhjgi+nSlcYEqBRV+BqROQSt5/zwqoYqASVChS2JmOJEcfDAYf9Du/evMZqvcbNtbjn15uNtrd1M6N+T5Z4Pe8lPrSc3NX1lTmCE8Gx/o7PJzypS+40nfBwf4/379/h4cMHTE3cLBFhmmfMs4BcGTs2pxwVgDIXXDVIkhiHwroJA8SAMIEpqwa6LixHoFyNUvusxsiYmjiMockyj8w1rl+kFrJRc7FnVuNtoJ9KX0k7BNRIiRF5L7i5vz48o8Zc17GhYgCkHboIc2WxAGgCljWV62dZntcAp9yk+e8T+9s8Mtdfluds3osKGgA0rtVMRL1H23brq7qlobLBsbAD+wL7e991WihNXotLxJKSJOoFj34csX52i/XtDVzwkpCmGwFPBAQPlFhpY3BceQbOGdCCQlUtphpe4YiEYZUhVK8ZA6yZqaL7z5DqyWKkkVnYrmQGOiHF3GwOU2WzzPa0bI9tDBTzLPzZXkspIi25JNO3Ubr6Rn2FUWMkqIzZWejP5Tq7Ljh1wakvgVNnWycC+iFgtRpB9w8XnPrmcKrtACD4cMGpr4xTnz1shK6rN4YwGHGJOOz32D3usNs94nA4YFliiUnrOtM1l+ssjtV51YzWk59zZRKxPghY3Hgi7pGxe3zAdrtFCAFv377B23dvilJG3/dFptAVVqIrJ9mUohif5CoA6SmNvMbVgdVlPWKajuD9AfNJlCWINPFLT9spZTgnLNbN7S3G1Yh5mnDY73A8HjHPC1JqXF3k4MmDc8aysCa81QVMDug7j+Bd0Sg+HvY4Hg54/eoV+qHHZrvF7bNn2Kj0oLB32iaS+MuWVUlJqnnKxl1A1E7eFWjkfcfTEff37/Hu3Tuc9ieAGN6JdnphwJhxPBwwz3MdJ7b5ICAZOtGaL4lZ9nD2nDqugjtcTsbkPLo+FMDo+05P+rKwUlQFB9VPz+qyPltIhUk5N9JmANp4TmPy7LTPDQMAmDRhaNgkVmWKCtQCVFwOSS3DcMaogMrMruNT22sGXht9RviUN3ziKqwPAcIJQo0GFXA7u1H7PYo5xVgXVY+6xp9+mRh/NeTOndkD1k3SDMYSIwAJ/5jnGceTU116Qug69F1A6HuMN9e4+cUvMF5fwXlX45KZdd46+NKD5y7otoXn8qZqvDPAjgA4AXd1B6dUXcYpaThKTsV9bGo4mdMZqNaR1DFq5hi3465r0Ta4sHmjzJXNMecIIQSMqxXGcUQIHabphP3+oMWRqhqJjIpXprtMnsv1ieuCUxec+hI41YZRheBxc3uNZ9/d4O37uwtO1dZ+vCDxh4lTJdeIhey84NTXxanPJ4iTuFJPpxMO+wMOuz32uz2Ox4MYQznOlBg3xrnRfpr4lTlXo0vmOvvU6ctO34ycIna7R4zrDW6fPcObN6/w+9/+Fg9X97h99gzXNzcYx7F0rC0aZtvA9mfxtM6bqxxYlgnHwwm73R673R4nNVZSlbOelI0lcM5hs93guxcvcPv8tkifZVWv2O/3OOz3OBwOOB6PooZh/8sZGdACUlzYDO8cvCMQWR/KpEkpYb/f4+HhEa9++AHjaoXrmxvc3t6KC3voUUJYvE14B+YF4t1zTViBt+WOeV7w8PCAt2/f4u7uPabpCALQhR5SWVeSgcTNL+MvfcJa8ZZLchwxoeuFIXDO1ZABmY6Iy4IlRtFQ1/jikpQIYWdCL6577xz6LmCeF7BkrZWKqGdMhlEWtsxJmLnKZLpi5Krt4pL8xLq4xIWvC49kQxFC1yQRtou7MfyQkAomJ8DSuLVbA92sojJ/8IQnKJubhnkqd3lCENjrpH+I7cjIpDoTZIyOAGYGmoVPKKbc4ioJEE6lukj5zFBU2UiASpEgYwcNmJe4gBDKd0Wd513osVoN6DvR5ncEUN+jv3kGHlY4HE6Yl6Sa+hor7UwRpq47mdcAyNa1Gu2cy5yz0IkYo85dLoY7ZQHhSm7ZZqIxwM2Q1T7Q14uaiPVtM8QG7LoZKHMq5zJe3nsMY4/VasQ4jOj7Hk6TVb33SGmLcZSE5MPhoCEpOtAWG/x0Sl2us+uCUxec+hI41R42vA+4ur7Ger2+4FR7l28Ep+IS68ELOr644NTXxKnPHjZ+90//hMPhiOP+IHJXWYywGYf2xMbg8nqNB+XGuOrlZGNJ4DJ5bb2VRdV0KAHgmHDc7dEPPV48/w7v3r7DbrfDaZ7wuN/j+bNnuLm5Qdd1OnBJ4ytdUazIqsIR44L9/oTDYYf9bofj8YRlXoob1DkPVmMmA54BchjGAdfX13j2XNib4D1SihLTlkWX+/r2Bte3t0jLgmmacDjsq4SeymHbxCICEjJmY7GM8VJ2xzmHruvR99IPyzTj9Q+v8Ob1a4zDiJvbG9w8u8V2u0HX9aWfhTDQqpX2/Cwyjh/u7vD69Ws8PjwgxQgQSpKeI5HQkwJJWQx6ZjHgKYu0HgsL0/c91us1ttstVus1+r7TPpaCWcssco/HwwFxmZGiQyIvC5C4xD2Dc0lsJFdBn20JqRoFsVP3ohmLyrrZv0HmykM1lNTYMWWbzAhUxkkWmg8BwVv4BRdDIeObzoBE2Av5H1W7WVtTAMRWfDV8XCCOy4eeGs/zS/7trE9A5yuaWSQLWQ312e/s6/m8gWIa1b1NRU7RQhiq2WhYE5ZWm4saCogpE6YlImruTTZQ9B5ONyYpJ6Dv0W2v4DdbHKcZx2kumzXnHUIX0HUduk6qPvvO6z0s5le+1sLwWLoVLhA6BI2RtnYlEGUAGTmJJGHL+FXGDAUZrQ+yrvunQHxm62zucI2FtQ2s9x5+6BFCh37oMa5GDP2AruvE7inrRqqu03XyvmEccff+Dg8PD8XWZmZE1wLt5frUdcGpC059CZxqpW8BRhcCxnG44JQ1+uz6w8ap2GyIAZQaNxec+no49dnDxu9/93swW+McvDfXL8oJqrI8VE59rXvzzCiDbZWBWVjQ5nxYpg7ajrbX44yUEsbViO9efI/Xr19jmWYceIf5eMT93R2ePX+O29tb9P0IghjunJNocB8OarQPWOKimfdSBMcWYtsSO5F7H7C9usLNzQ1WmzX6fihAZa5gQCTCWBdujBHkHdbbDbphwHQ84ng4lsIv0mGSXMaZsSwLkCVZLSUZYKmIK5KDEodJIDUm03TCm1cnvH37FuNqxPX1NW5ubrFer+BDV4oi5ZTxsHvA/d0d7j7cYb/bFV12Y39ykrjBmGN5ZmMD5nnG6XiCdx7jZoPVZoPVeo31eo3NdoOu78Bq6IQ1YKxU9i+lhMNxj4eHHY6Hg7JE+p0ZYE1WBAkv5JyH70I5lduhGQxtK4DcOkdtnMRoGGtS5pmORbvohCnIpf+JJN47dAE+dMLApKiAXr+jncemKGGJgG1r7Ltq7DfqDoUYzJbQd/6Zjy766C96q3N5Qpt75akVwMXc1t9JE+jsvfV1Awdov8saPWO2mqawygVKcQ1GihmZBLwBYTpTkn8njUnnrkPYXsFfb8GOwFkkO7N9bwKm+VSArhTx6kT3PHSdrIe+R+h8VZYhKbwUQodhpaxpkwzHLGtxXmYsszBKc1zk78tSqrMym7qIPaOF+5mx15+zTau8kUhU1bquwzAO6PsBnbri+75HF0xx59M/IIJHwNVVQBd69F2Pu/fvcTwdRJQwZwXgT8yTywXgglMXnPoyONWOq7yesV4PF5yy61vCqXR+2EgpX3DqK+PUvxpG5YwhalxIzmkMWzu5G3doOzFtUNrJrQdOAFqEhMoMkVNYAwAlztU5pMyIS8JqHHF7e4u793eY5xOYOyzLjP1+h7v37/Hs+QsMY4/T6YT9bo+4zBLvGlXz3Ka43Z8cmOpgZt04rdZr3N7eYrNdI3S9MjgdAMaypDM2oQx+SgCzlqIPcL1UlPQ+YLfbYZ4mAAzvAkIIZUnF0jYou2SuTJFSDMED8CVRyEBq9/CIhw/3+CH8CzbrNa5vb3Bzc4uUI+7u7nD//oMUStK+994LiMWoSV7VpWtJcawShkPfY73ZYrValfi9YdDTb5BqtsaySXuhE50QvCQ5rjdbHA8HPD7scDqedOFUg74soqxCoJIkB5vgajzODJ2e7suktkS+ZhGasbO1J3GJgKmlcPM+52VsoGPXskr2OERU+qqyJVaUqRpvgAojUJYd13AJ5lyMY2Vn6mft+6oxtqs1ye3fLM62Nern2HHOwLafrc9iv3xqJowdUgyStirbaeogiRiu+aBTt/0yz5hDwLheY/juOcbra/i+Kxu0AqbnXyj3tGrk0ySJd6qV3w8jVps1VutRtf+9JkmKQgw5L/r0yVhZ6cyYpKhXVLWOpP/O5sJOSRLici71B7Ju8Ozw1LLgDNHw70JAZ8a679EPvRSFCr4wvzibH7VPZSOlc4UlSXW9XiMEDx883r17i8PhUKRRzxnSy9VeF5y64NSXwKl2E23SvRec+jZxKoPPvsNfcOqr49RnDxvOu6LKYT+i7Ryks2Aa4Y2BVrbAjLO93kruIdv5VQynetZkAMviqXGC5T66QZ2mGdvNFWJMeHi4xzTN6LoOzAkPDw+Y5wnDMIIh1UBN3s8Zy0W6yFW+jLVdKcpGuOs6XF9f4ebZLcZh1IXuELSoSi0jn8uEdJqkJ+FAnQIXISPDhyBsCICHnLHMwn5RW4zJuRq/yHISZ57gc1AFD3fW17KyEqyKY4wR9w8P2B32ePP6jZyWF1FcEZe7nOZjnKVPmj52DqWvs7J4w7jCdnuFvu/1pC7t8N4XdZS27dI4SY7inMAk8BP6HuNqhe3VFR4fdrh7914mp56K6UWFAAAgAElEQVSClzzDWB+9iSQ7ghA5N5NfWQ+TFmRWncjqqra5Yn9nM6Wskn36PbaRoGbjUeJzycE5Y7IqoFQpzfa+GoIBJ4wQKrtiRu/pxTBwrr+l1vp+4irGlBsmy76IlR8qTBGr7OGnb8iofFJDA9V3UuWKWPvO2spscaXyPYkZwRi3ThIz/dAjrNfonj/D5vlzrG9v0A0aZ50/Ybibq42RLmowCmhd32McBwymz++cArgDwQq2qSvXS6heNulPiBhBIFHZyYBuQE2akmFVhoXVRZkztmmKy4IYxeCDIAzRMKDvezXaGrLjSJIgmZE41blq4+wAUilElwGGq31OQD+M+O77F+iHAe/evsVht8Mc5wq2l+uj64JTF5z6EjjVbk5TynIAK69dcOrp9YeMU9BwPbtcFy449ZVx6vNqVFqgiKEFbByhU5k5spkKLqep1v3aGnDT/42qWCMsTT1JMdeJZ8XenHOl+qpdzKysUcSyzNhs1kgpYrfbIaWELgQA4u51WjXUeVdOt8xisGKSbP+cGCnq4GUBpPV6jZtnN7i+ukHfD5IU5OVUWt3SESZh6H1AV5gWFvdymdgMV76bEUKHse+RYyouM18q2zasGWThyol1RoznQCrvg/alxXL6MuHNmIUQkDQ2OOdU4nZtDMx4iIETI+kcYRxGbLdXWK/XMjm9TE4GFMAk7rnrwpOYaGkXO6ncy6jyeG7w6J4PGIYRH+7ucH9/j+NhjykdAQUPqYrLZo8qQ6OPKwQAoeqTc6VGYKCfa2XNYnzMpLH2EYs+dvCqhV2NsdOwLnPhu0yN2dJ7cWWjyiDY62ag24Vbrgo47SDaejJ4sLn+ZEroHfRT9odtTACUoj4/jgaq2103BNol5d5nzwPtK+AsAU36WePLieA6Xwz5zfcv8Ivuz3FzfSNrz5GGcZy3qZ1/pTeYm9frT85SMTnlhNN0ktjRYRD2su/BgeCQK+NYnoXLZgPNeATvAHZlDRNIYmk10dIYPNug5ZwQzaXNIhMagoQ0WHxrYd+MIWrGwNRmzp7ZjDtl3QRU6PTOYb1eg58/R9d1eHx4wHQ8fXpML9cFpy449UVwavs//r6MaUoRx+MJx+PpglPfKE5VLxRh+/w5fvHrP77g1FfEqc8eNkoHNJfFLtqp105VLWNkhsSMurh4zpUQdEqI4XYecPVeSfWzjXUyJgNAOeGlyIAjrNZrxCRMUQwBQ98BVIvPEBoFJFVriOpalhOihPGsxhHXNzfYXm0xrlfoul6f6Vy+TD4vbIL30vmO1BgA8E4LNpGDd+IaTVpNlhwh9D2GLO7fWXXB2yq1NtFsgbbPX9zXxqIZUFrfuwoYKaUS6wftYx8I1CQhVYAU+TznPLzvSrxrCL4aLk0EkvG1z3NhkRydx2mateFqceCcw9WVuLuvrq7w9u1bxPsFACEtEdPxKO5Pr8lJhI+NEsmJHFRfbb61MdrVlWgAIAtTFo2oq3hIIZ3K/FnjiWRDweSau8t98tlz1Y2ItYC5Gu+PXc+V1WovBldDYK/ZfajtC3sPl/s/dX1+dG+7pxkRIqvcVNZ4bVOde9DNFUxvxR6FhKwhApYUkY8Z87IAAA7HEx4f9wBVNi7YRgV1c2fx9RYaQYSzfpH3eZV57NF1ssYAYYEfTg9gSOXjEDp0fYdeVTS60KFU4KU2ltkYXQ+CFZnlszXGXuoVmPSmgwPnGtpBNpB6yQZI7CGpfGcBybJpUNaxkdksw6jTiJkRU8TpdMTj4w6nwx4gwrha4fvvX0jM+uX69HXBqQtO4afHqavrm2aKEZZ5wYf3dxec+gZxKqZaQBiQmi0XnPq6OPXZw0bfBRD5GguWGYkr61Pdm+q6JmNUUvmvnXztlFkNVdXhllNhUpdsNdw2AUX7N0jWe4q1A+dZ4y3XyCnh8XEHRw4BhBgSgibGJZ1oKSVEbVvWtnVdj+12i+uba4zjSk6CpeCLTuTSFnV5FUUQnfy+DogxNeUZzKCHDn2fwKVP5LOnk1SvNVCwyZ6b9wiQ0JkrOqWEBJHCM4bNFsGyLBrrx3CeEIIUiOKUJNYviSseBC2IJC5Z7x1W4wqb9QbDOApIeAGJzNKPwuItyhj1mKaoC8IYLWEUGed95xyB4MAEhBBwc3uDcTWivxZN9oUjYhQ2DmTTksyW6GKT1+BEgYSM7iDbUlgCHqHWTqopZ7LQzqsMtwCZbcHBTvnC2jmvOvsaJyvzWRhIA9Ri/AA1eHX+1m//katFIXuJ7b/cuGpbsGi+j1kZp4yiB9GstfZ75OXctI3O7LYYaFUx0U7Masxtb1FyDolEH5y5GPIffniF5e8i1usNhmFECAFdJxJ6wQf0fUDoOokjVVWPYewxDFVmz3uHcRyx2WywWq3hu1C6x566hruIqsx0mrB73El/kbCBwzCi63sJD9EiZUQqr0msQF3ZM1mzFrfPaszl+Zxz8J2CSJJk3szC7sga8WXsiYx9lPcXtkiV1zJn0Vcn6ddpOkli8H6H6XQszLrzBKkp0DDFl+uj64JTF5z6yXEKFiIj12q9xvb6FonpglPtS98QTnFtLN6+fYf/+uH+glNfEac+e9hgdpAiI+0ptp547VTFDDCnYrzP3dUoJ72nUoR2vxi1U9RFXEHBjLkuttRW/RTAmKZJNIJXK2RmnI5HefAYMDsHR0CMtYy7MQree4yrVdHONkNXDSmVZK2ck54CGSnVE2ZKCc5VN2J7mYEgEuVwcg7sA6IP8C4heScVZiGbb6l8mpAoqVGVE69TJkH6WqX4GHVQCzvWGCNlqJyvp/aYEpIl9zEXSbO2nwlA6AKGUZLrQDZpRYfcmL+qghH1tJsRuoDeOzAywOcJdNU9jMLaAUA/9Hj+3XdSYZMSMjESGA4WL1oNFSm7aMyJuMvFmlC5t1A5ZbYSNTGpsiBQntnJvNWYyLPKrmcDSrXtIGHnrGgTQeNxubBBsJcAMFPzuhryT02WZi3Y9xvOccNOVQP+8b/ZmJ+m2Qylt8h68BPfBYZW3SpfyGbYiaV/Epc+PAOszKV6qF0P9484/m4S5Y1hRNcJe2OgP/TiWl6tVhiGEX2vbE/fYxg6DINofTM8QkggmtElhu9cUfcQFipo4hqAtRbhShHLIhuNeVlwPIlhZDXCfT9gGEcMY6/r3VcWTXuIzR2v69smk9P1n3V+OS9FzkrybMPateNg64ysqxUcY5SwjMN+X4qRnYXiQOLEMS2YC2perk9dF5y64BTwE+MU8lly8Gq9wouXL9ENwwWnvkWc8uc4tXvc43f7/QWnbBi+Ak599rAxzafyYRtzU/MoLtAmttIehpVdEAOuutUsRsi5fGY4LE5WFpG4rIL3IJDGcWYACZbMVh6Szzu76zpsr67AzJimCZgmEMSIPo0BHUeN9dxupJiLurNaN5qdRoWxJRCZ8eLSD3y27iuDdjaoWswnZ5FXc15YGM+d3ocUPDyOxyOWZSmsmbjDWFykBHkeZURsIRFcYWCSJpeFEGTREZWKrHFZEFMsLIBzvri3mTNijAghYFki9vs9Yoxl7E7LpIClLj8AKckze2cMm6vsIbkqA6jzQdzk8YlBs0JOdf6klFTVQZZCDTJAYxBJ/191xMUVbQbcqA0UMGGN9zVWS1jKGsdt95cxtNhGKXZlVVzruGoblEkxVtTWSWWVbN1IXzA0+fPJxeUP1JuYIcXTX5YZJ01s3/bR2/nsHlzmjGwq7H0fQxZkA8Nc9MjNhU0atimsizCAMdVQhyUmpNMEzic80L7MBat6673XWOsNVquVGPFOjHff96Ig40UBJ4SAvuvQ9Q3rFAKGYcR6s8Y4jhjHTu4xyH+HcaVDIxvDeZ6xzBFxiUgxYvfwgMcH2cT15tIeBoQuCCvbhIrkbKo/7RwhdH3XrENNVmUz2F43HFznh65by0va7w847HeYpqnOvwbAqWEFhX11n54ClwvABacuOPWFcKrpN0cO4zBgHFd63wtOfVs41XqR5GB/uuDUV8Wpz+ds6M2MIWjjU4tiByqDIsa7PrC5msy9Le+jIhlmrIp1jpyszt3Y4IwYn7r76vvN6BoLdH1zg/sPHxDnBQuhSN85B4Sux2azwXqzRdf18D5gGHpd2KTxnBLfJwWUssbjWZyvsWdUDKe0QWIsU+JympV+M3URjfvT9y0xgVISt5nz8D4XZud0kgQ0e86UGURZFyzpqdlpG7waVtT+zBmpgA0jUy7G6mxyISNDciVK7K53yJlxOs1IKZfnLjrTqEonOYmRrAZMGDZy1QUMM6wWL0jubOyICIk7BRtx3+WUkH2Nm6ZizLgaC2Kz0WWyN5MWxhE1U1jvX135rLKNZqDsNpXRJC1AKOObE4rzV+Z6Ox+ldkhrn5kLZwAiY5TauV0X6tOrPnNzTwUYA2FjztrFz2azqd6nACmAkkT35HPn36trOaseP9szKGeXAZYczzMG1hg32VSZu99qAxgAOATvcDodsd8/qkRnKIoZppohbuuuGHIz3s5ZmEcn8a5B3NAhdFitVri+3mK73WKzUVbIEbpuQAh9YWssTEVcxBnTPON4PImhJUk27vsBfd8habGwzFkq9/oAcrXrrIMcCBR8YYfkd4LgmRnzvOB0PGK/3+N0OiGlCGKWarfKKINEfQis9lS/wjkHZAZfoqh+/Lrg1AWnvgBOiYyv3tFLwcTVarzgVP3EN4NTiavnyvrjglP4qjj12cOGFT1yRIBrpOOAwmg0Z0wANoDVXVfd2VQG1DrS5lDX9dhs1mDOOE1TKS3P3C5GLqyOAcqnXH0hBFxfX+Px4REpJ5CyBF3f6wBfIYQORE4niS/3iSlhmiaNTYXGSxJ8kJFLyuCKMVLD7yxpp7IPBijWRuYaV+h8EGWP6FTRQtR8ahyg/MzzrOoIeio1DW4iOJaKlYnFeFisZDaJNLN2ajjA1c0OKLjkXDSeLf5XXLa5uPLldxoT7IxdkqH2ISgDI6dk54LOD1FVIRZmzGiTosyBOi/EJS6G0YeAcRjxQLuiuGJGv0yv+p9P/OP8Op8bDJg0Zkmky42pJ6AtYAQAVkBHjTg5J4Vrzi6Z5594uS52s6psawIQWb7zhyDTuj5jipT5IrK/FeN9ZjiBYlkM+uwmwjiae1QBrgGu8s7SXwpKbBsvZYe0xwBG4MqUFKOv3x9ThsvnbGpmdXEzY1Fj7pxD8CeNiQ1nBrvve42hrbJ9IXQgB4zjCuvNCnkY0HEnbGRmLDHhcXeAD++00JgXFnmzxrPba2y2KwWG2n+V9QE4y9o/HQ8SipEljjd4D/K+sJP2zAa0RJUptUGSPICM6TRhf9jjuBf3MxtrrFmL9NE8bWymTUtl6cDn77tc9brg1AWnvgROOV8PG0SE1WrEM5UZvuDUN4ZT/nwXnDI3YXZyXXDqy+LU5z0b+iX2eTPIT1kbM6oA0PeEGGMxujY/vC83KfcZxwFXV9e4utqi73sx4qcT9vs99rudxLXaxhQ4U1xo2fG2XTFGOO+x2qxxOp3AAIZxjfVmjc16ozKBVX2gfG6JmOapVC4NWvDEwnzsFFy/W3u5aY8Ybqixj2rkG3dXkjhRSwxyOpAS18sAZoQuYOQRzjltTzLlRuF4WBgjVtYErKoTaGIjbYwYACxBSRZX0qJRAKTyq8YAB29uboZUa5J4THHxi4HPmZBihu8kiQoEZcMCrHCNgY65kW2hiCEwB7JJAtZ5NvQ9rq+2ePPmrcwfzwhaCdjeaq3j8kedl61zuphmMoNoBsv6hWG5I+IydppshvL79mpZHgHs/OT5rK9JjWwzFmftFPAwtqv0FQBTH6lrus4rZk3ENGkN29yUDVLbRusr7TFjeup0eWLAa/+yWMTilrVfMDWxybYWdd5BNxdl6jWG0ZV71/ZC51ROCXOKmOZZ2Jhg+viivnJuxAd0vRRHOp0mzLPULxhXQOgA8gTvgyjzZCByRowZp9OC/X7C3YdHjKsBq/WIceixHnusVnJfB2CJC6bTCdM0IaYkhpssgVZXRMq6OZIxr7UHoH8HUsyY5wnHwxGHw0HYoSghDmKMm43nU4lB7R95b9m66twq6ZSX60euC05dcOqnx6nza70a8as/+uUFp75BnGo9meW64NRXxanPHjZStsIhdnpvGJCzH3m/LWJrWM4MkwTILOoWIXTYbjbYXG1xtd2W5DN5P7SMeo/NZosPH+5wd3eHZRFViaDNzcwlJvf8++rR3XuP1WoF7wNW6xVWw6AygeefSSlinhepAnnGgpFKzqEUSbHnrAmCLFO1ART5qQu9TRQEQRmoAJ8ikmrT5ZSL+ghpP3of0PcAYcYyz/LdTSyqyR22NqeN463u06yqHhExLUgxyXNqBchW5QCZwWQSkV7nQAYhwRNAZH0nwNR1HZzJrKGedkEQt/giC7KcpgHpW1YZOc/wJGAwjgN+9Ue/wO9+/y/Y7/cCGpRgSZDlMkukfzeDyZbMVygVFJApz9e0kU3r24JJCXCw9+azLyruauaijS79bnGOMHtZn7F8npvvN7Np4GLzB8rM1OesTKveG/pcqGuKIWu8fvfTpd4AiN2KXHmXtYMZlaHlxoDXbgRgTCTLnEgZjg0sav8+XQsWg0wAoBsa77x+bxade5aQkBgjrGvKPCMplLQaR4yrEeMwYjpNOB4mrNZrjKsVQi8bka6fa2y7l2quoZOY3eNpwfE0A6whEcOAzXrE0AeAI3Je9HsZKTmVHnToulBj4HUcRLWjYZoXAYHDfo/94YB5WcDKtAs7dM6qkQUUPx0v0roONm/KnEmf3PxcLrkuOHXBqZ8ep4D2H0QOq9Uav/rlLy849Q3iVCCcHagIF5z62jj12cOGJJxAb5SBxsUoE68NoZBGnSlBqJHy3mHsR6w2K6w3W6xWa41BpSI7KGNcFUDsxNh1Hd6+eYNlmpB1tmc1jjlJDKkPYkgKGwBRDpHS6iO2myv0fQULORgLq7MsUiVVku58E+MrLuxqiEnd9VwWubmkbWAEBGpegi3m1m0tsbEqVwcUpQIxRho/6rkOTCcDasmJma28fQY53yx+uV9OqVSatT6SCpHC4Pm+qxrO6kONMSKXBWb6yyQxrVpsymiClAVwQs7qYqyTuYQdKLvBQHGZA9QwSijMQ9Q55oPH999/j+12g8PhqN/VuqmpGDsbw/OJTQ1DZHOUPvl3Ua8oH4O5Kss4FINlIKlGnxvXf/1WbUf7XfKbunbkO0sw71lbpG2O7P3nb2lIQGUVzw2mvEn/IMBicOnsDwMa+rgvuPwhT1++r7rE23YwA5wYkeOZQS634yyvOZJNQXkeTaptVDFEBSVXFkuBTdY3gzkCzJiXiOPhCKfKOH3fox9GrMYVtlfX2F5LYa9hHLD0CX0vrKZ3AQzRO7eiZMxiqE+nGYfDCZwTCISh9xjHgNA5eJeR0hEAYbNewfmg66y6opmBeVpwPEoSncW4svad996MZO0eRo1nLzH8zebH+orP4Bd4Em98uc6vC05dcOqnxym0ixA5S+gcES449Q3iVPYBLe/OUI/mBae+Gk599rBxc3MjCzFZcaGqZkBEReO7sJpqkKRQT0bKCd57jUHdKBskxvRTUoV2X7u6rsPzZ88x9D3evnuL/e6xuGehp1xR3ySwc2WxCdPFWG+ucPPsBl3XIy1SGKkuMItrBcZR3MESf5rgvciNVYNt7mjRA+fsinGqLvKsMZFl2urzAJaUx5mFOVNDV95HoswBIqTyOTGq7AB2BDiHZZL2ERjJXP+mmAJxQQuIxsZtyDWxB1akpitsm8XEOufgfIfQDcICEYF8UF1mLqd4SUwSd7QBi/cWFywnaWM72qRIu1LKmKcZh6OEINyf7hF/JRro33/3HD/7/nvcf3jEEhfpL+Ri/FsDI4sRZyd5u566pa0NNrcIDs5zqQZ8xtaQLSJN9NOXM58zcWb8WiCxNrVXO8xsH2SUedO8pJ+3G3D5HBpWtsyr9kuUJbPxrgYR5VDXPF7Th1ogis3lzOftAmCa7ZVxk7ZllSr08GUTAaiMZZBMHIslJhYGJjSa8dDvYpL5JUDqNB2UyxqH9amO+bwsmOcF/Lgr9xzGEdurKzx79hzXt8+wvbrCuFrBh4RpWTColKGtlQ4dvLfRkM3GaUmYkyXYeXRdAtjpRtArgyqx/sfjCcfDAYfDEXGZC8Bb/1oftsWRGGj2wFSYO+bcbI1RxoqaIl6M3Iz/5Xp6XXDqglM/PU5xqSMAAI8PD/jNP/wDjjFecOobxCk8eV7n6YJTXxmnPnvY+LM//7MSR5myuZLq3aQiqa9FQHI18jmnYhQtzs0qIhpLVLS0mwXfvpazMA/jao0XL16g6wJ2j4+ISyosROaMxLkYHnMdX11d4dnzZxiGEfM8YZ6mZiLKd3jvMQyDxJ2qvJckoJEamrYQlE0mgD3gUkZCZbtKXGPpHy7Gxn6fOCHGpZxSLYlQjK/I/TnnQK5HzqnE5RblkGxuSS5JeY5ZqjgnUVUQ8Mzl5CoLOsMskiTJeUl+IoLvOjmJ+1DckrUAU3XROY1PtB/p66qbLqd/Lv1lyUcg2QRM06QFYUSveVkmcM6IPsLY8Jc/e4E//7M/xbv3d3j1+k2Z1JlzcR0XQ1z6VowWq7E7J5HUeVzGvT2HN4tOVxqfGVjTjlemSm+f+dNxiWZAocyV3d0SDumjRcjFaBu7SFTvAeNrigXm2ohPXQ29w6j9YEbF/m4LtDCY5e9WCMqeoX7VGZuhSZ5OWRFJrqzg5dUtnEqoiPSXfMzmCiq4NDAoevQGQm1c8JO2E2CUX84Jp+Me03TA/Yf36IcV1psrXN/c4Ob6Ftc3N+DtlU5/GdeBgV7nPXmrWeALMMeckU4Jy7LDaV5wfR2xXg2Y5wmnwxHzNJWNYmkf0dnI2UbCAJUgm7HySKzMmAKaUwNT2PCcNEzEpC8/PeyX64JTF5z6Mjj14tUr/EJ7yaq4X3Dq28WpFk+cu+DU18apzx42dvtjLT+uE805J4uGAabcDJaxJixZ+12H9bqHuXK5zjA474r71FzD5oJsL1GcSBoLG/D8+QusVxvc3d3heDwCTCWZhVmSykDA9uoK19c36HyvusWpuad0tRRv6eCc19+T6piLBGJMUdeMMDmhmawyINVYnSVinVEGWlxFgZD1JCw8iMRphi6AWaqtLstUJzl5eE/oND42MuC7HiBCilphds5ShMkkA9Xoeld1z5q1DZDKEGpykw8e/TCg0yTAGJO4z7RvjFUKwZeExRbYTMe+3B4VhJdlwel4wGF/wPF0wjRPmJdFxt85ePJA8MheJjoRYb0a8Bd/8Wu8efcOj487HE+aeAnSvqtSa/ZUZfEwF0k2a4zM04+N3qfYSdk41Ccx0CZySFmNVSSQuX/JGB77stbgooAt6b1/9MBvv1BWpBI9bdiHtpcr6WAbJxh4tN9dLLgZb2qbBVi4RGmbtNSRfYaroX3Sn3bbUNaPFQUTkDUd+/q9DgyJI2dlmWSOKBMFA8V27TDACdB7WZEkewjOucrxEUoVXXDGPB2R4oLj4RF3795hc3WFq5sb3NzeYrO9Qt/3SDliiT36rkPoOpDz6LxsVDILy02cEecT7u52uLu7F+lD7xC81CAgNGodnxhfY8XgNdyDCJS5sNwEqu3WycTMWhAuFeOOZr5drk9fF5y64NRPj1OMG01QlyZRUSe64NS3h1NtGB1wwakyrF8Rpz572Hj1Lz/oDSwRxRdDV0+7dVFYMlbXhVK6PGcqJ0GbOG3RIXlgFAaguntl0XofIOXYJZ5tvd5gvb3CmzdvsHvcCdOiDw5y2Ky32G6v4LsOy7KoC7XqpdspzCT0zEVeEs2iFmhiAMaWBA8iSZDLWfSKQdywXihtzpnFUDp1xWqRImSR4ZMB9QBlwHv4MEgfOwfyUPdyFlaMxWXnnUd2sgjIB3h13S0xIcelxBCb0RLXskyMbIlPTrWefdDCMAK0oQsgMBIyXHDFwEvhKqukK6yNhz8bb4lrFPZqWRZJiDodROHgcGzc0MLoBF+nm5mnsjAV5r/77jv85b/9C3z48IC//4f/KcDcsArE9ZPFuJW/1UsMCBUj+uSXxe7ZnQQMKndR7kKELgRkdftzrElv8ief3fgpy8Goc7u83ryH8WMLVNcWUAyqGIx67/Ye5W/GPuEcpGCAxlyItdbVTk8axs2zlVhhB12TrlQxtsTF+lF5rbH9BWiNQWxjP5nN9c6NCgajqFuQJM5V1ERlrVxl8+y5vRPFFgdCThH73SOOxz3evXuL1WaD6+trXF/fYLu9wjiu0SdhO50LCF7nDHmxUyzFoFIC4mFR++bRdw5D5xBCU4H4iSGvfU8Ng1crAVQKsYbKWKiIvL/O7adx0pfr/Lrg1AWnvgROWdJ2+R2oVGa+4NT5vf7Qcao9BJSWXXDqq+LUZw8brV55HRG9OQEWJxpCwHotlRJNg9iYFDnxaSXXnLQSayr65UGLnqTEIgHIwjiRMhfeOzifhMEhwIWAdfB46V/Ce4e79+8xxwWOSCot9uJujsuCrDGnkrDTg8ipy9cWlsh2QpkBARcz+KSGtSbTSYfLaY7YEu+aJZRZhomBGBkpx5K8WNUquCbQZYeUxNCllKTYkC4SAiHqZMg5wLmISIRlZkRO2uZGNxkosb05M0iL9xA8yLvignbBiy67r3HMTGL4g1bE7Eq1Wk1401N9dd8LS3U6nbDMEx4fH0UC8jSVhSp95+EKa1MNpPVZZkai6koPfYfRe/ybf/vnOE2i/fzDD2+F0VNmA08M05kRtffYb82Q0CeYoyeG88eYpRrjXBMvRRryfBE2TdAm1vjVNk6yOLcVdOvjcAMOHzeT7eZte5lL35nE3afZKXrymSf3wbnBLyRUMa7iXraYZzFcaohJYdjVQ6OJ+7TrowWMrLKK5QUCmAlKpYjNRnXzy8br6SOZO7gyKsXND/1viZlnpGXB4eEBy/GE3U/lWjYAACAASURBVMMj1psNNpsrXF9f4+rqGmDGarVC13cFWFwI6DEipyh2Ky04nCbsjxlD57EeOgxjJ2xyaVaNgc0GVgzAZBk1BIGhrDtnsIaWVHCTHyJZQ8TniveX6/y64NQFp74ETrWX2S8fPED+glNP2vCHj1PnBy7ZpF9w6mvi1Oelb1MCERC8xI0BEPeKAwgiy7XdbuFDwDwvWJaIvu8BcIl3tROV6UOrtoWyQCynNCbMyyLxnU7Kylt8mnOE4Dx89EhJ2B9LKru9vYF3hA8f7pFixDCKzrHTpJbW9SnPktUgN0uDoAxRKkaRnBMACQI+y5LqYiOnE4rhKBc7wswg59C5mlyWcyrG0elKYHPnc11YNmmIJB7PlDz6rgd3jJgSsKCsLgYjxgxAKph6Z/KKpkqSpDorgNB5NcqhjIELQWMBfVkA5oIWt7QonJCCm8isCfDO84K4zDgeDpp7sSBxreJJBn5qVMQw1YXMygZYAqXX+GjnHPq+AzNhu9niL//y32B/nPAf/+qv8eHuHlYRV/a3bDRBGcaz9a3fq5OgjnYxpq3B+ti4t4ZBjIGycNCNNdWqwsysMnC1IfWeTxKmSN2R+j1V39vmot2osijtZ8mmQANmThmJp2ECBVzK5zRMRIGJ2/dSXQ91PpohUVbGqa422UYkgXTOm6EFVIkkNQbJcJY17tPVvq9joN+tv3IkkpclHME2Pe18ytJuJmGOHFtBpwykWBhI8gHEDl77nsGI84zHuGD/+Ij7u3dYr7e4urnFs++e49ntM6zXKx0KRmKJjY1xQVwWYQ05Y1kI07SgPwWsVz3GXgorQT/H2ZRKcunjrA9bww50TTThAu2Yk/58ji26XBecuuDUl8GpswMBifeIhk7fc8GpbwmnMvxZO1kPYxec+no49dnDBjtZZFksS4n9GlTOyxFh9/iIu7sP2O/36IcRP3/5ErfPruG8L4OZllQaz6oo0YUgrpicsd/tcTwe0fc9VsNK3aISf2gn1BDkged5Rk6SuNb1PV58/zNstld4eHhAzoy+7zAMPXJmxCbm0iYptEOFLcolkaromqsb16uBY9TTaHWpyW3qiVDPrgSIW1c+k7JMrKDAADCW2Bi0YrzF1SWDTgBiic8l5xDIlmVZQ/I+ksVpiXJQ9zsSxB3uxYB3IZQYZjitxNpUwnRO+rLreil1T+Z2lJjW4/4gFSaPR8RlOXtm5xyIVc6Qm6S0hrkw9xsgMZQuuNKn5G08GHHRGEAIy/j89hl+/vLnOByOOJ1OOqHtvsJkyRhVI9YaaDHIaN7dGBsbxDNK5snnzRw6LiEA3HzWyABQdU+27tZ28RkjY+uXmGR9ASWM1nAp5xYIDECeNPTHFjZR0TQvhiKn2ramFypIqfvTDHzbNyzsRgE225gVY5rP+iTnJEbX4sMNZ3WuUoZuklxZc75d6+Zybhgsu5cVLGPOYJL+zczgKB4yoiyuaeeAlBFzAnmRFvTJFwWc6DSONzBOE2NaZjzsH/Hh/g6nn/8Cf/Knf4LVagWTEuXMJabekuLK5g2yaTuFBWMf0A8WXsYVuHT8zYa0rF6ZN08GlCGMM2tIzKWC+I9fF5y64NSXwCnrW0DUi5x3UiAuXnDqW8MpzucHqpRTSW6+4NTXwal/NYyKdbC6QQwsAEzThB/UcE/TSQaHHGJc8E+/nbA/fIcXL15gtVrBZltKqWhfG5PknMOSZIL1w4BgiVwsJ1KOuVRPJSJ0XQCYEfWewuqY6oTD8XjEMI7wXZAkF5JkvLLoAFAp3lQNcFY1JG/ucGXb7cTHJHGANnGdWVJYlr4xCVbdtErp5ZwRk27KFDjM3c0sQGMxp+aWj4stvrrkCATvTY6R0Su6cIoy8Y0Jo+oxsL4JIcgyJGG1gg8YhlH63Aw81djLaZLCL6fjEcfjQYo1yUxUtsSXpLycRUHEFDHKJGRJl3P6bFkLbwmDZxVsJezAAD7ljGVOeNwd8MMPr/HPv/9nOAK2mw1ySlhiFOOnfQ/8+MS2Aa/n8CdWrw4hxEzJizY364LLylDmMg4MFObPDCHbBHvahAbgS5IgUBgoa0tlQ548AKj8WZkcGcvz56L6kaZvGAATFVbCQKF+b7uhaJ5R3amkOwcHlAqq9bnq5qaCpQCzbSgk2Y4RvEMIPfq+R9d36LseXejgXCgxtlbhtN5fqwmnJLHIWdlQq5GgCbK1ZkJEAokiDDkgyXzz3sNnD4pi4IMPWBZJuvM+yKYtLkBKuB86zC+/xzAOSDmphOGEeZkBVeOJSTeHnQBQJsY0R8xLxLAEjEOHvvMNSJ5PO1lon0LhOt72h4Hqxyoxl8uuC05dcOqL4FS7kUwZcY7gACS+4NS3hlNyiG26lS449bVx6rOHjb4f0HcdwMDpNOHu/R1Ox2M5/YvR8gB86fS4zHj39i2m04SfvXyJm9sbBOcBiqX4TdKCPqRqFOM4NidqjflmMQ7LMgNqIMVosBoTAnlxTcVFJuE4DBjGobijc05glQpLrctKe8Tiz4IPoODhu1AMTGaJa5XHyrAiNA5i0EVNTyYM6/sYGn8HkwXTQWEgRZHOc7rZDsGpC7uqpFTJPg83B3WFqQvUOVHhAMN3GXAOEeI6A8SwOvKgDLhAJSnKe4++FybIeUmelNOyJN2BRWFkmiYc9nscD0ecTsczts05B2qSrBhAYjaRPzDZmJXZVxKzzI0bI5XY6Jy0/zOQzRgxcDotePPuHq9evca7169x/+EOy3zC0AWshkHaiiTGTvv7x6kTFMaC9H/nbnF161qsJoASr4hzrXJyBMek4JU1ljmVdusNUV/gAuBk7lOLK1a2qLSvtrasofaeZmQz18rHbT9b+IcxFMKGUjnAtcydzbMCIrZJyxE5x6YlFWjE6NFZFWTpB1faknPC4mW+9H2HftULeEj3I4SAvu+UleyaEJEKbqWCaTnEoNw/adViVjd1Sgkp5sIAWYJtUkPPKUnc/Zwlf90AUysbO+cQuk7ARCtBh07CWphzUd8w5ZC4LFjmpTCUoi3OmowpISK24T1NC2JMGMcOQ9/Be2p6vY6p9SWAIgVaQFY3YxbA8K9sVf6Xvy44dcEpufdPi1OteWbt65QTpilecOobw6keVbYaALoQsFqNF5z6ijj12cPGdDrh8f5Bqg7GpMNb4y7PLxkIm7wP9/eY5wWn0wnPv/tOXKTDCoubQVQrsnotntQW1hEjrydS8jIgOWlJeYmTs8nAnDHPE1KKGIZRFiubK4tLZ+cscaspKmPlqExSS/BTG6UGQk/StgTs1KYKA3JfU9EwGUBC5qcnaJXxc64wRaYoYpVgTXXEdMG9DxjHmry4LAuYAeeqrB5D1ETI6biwLMph6DCOQ/EcSC5Ej6FhhzJnpCXicNjjcDjgsN9jnmdlvswWtMlENuk0kckYBiKQJhua90zaCZhEpKimyEkfpf/MrFTzEmPCv/xwh9/97rd4++YV9rtHnI4nHE+iF51T1OQvkkOKsXn/P3tvsitZkqTpfap6Jhvu5GNMmVmVQ2VVk82hAaLJFTcE+ABcckPwObjrh+CW3JJLcsMHINAE2CS6G02yu4bOyiEGj3C/k5mdSQcuRFTPuR5RXiCQEahk2UG4+417r5mdoyoqv+ovIr/ovazDmU8uGZqyAMu30+LA178rD52e/J4iPxiV7XVLg5+FmUnLezz5whQ2TuzLqoPNCzvl/7L/F+B573nsKof0W9CVvb5Zp1CIA8/hUfmxKa+H3LAshz/JfhWL5KNaZ6jUbq2mMbgcWjaOELWvwWocrVN1GOeoq2phZZSVtM4Wp71mNq0yiTk/uwC1FrrKfLFijKQpWvBeHbgvBb0hRqIPzF6ce/5+8mqrJMxoca6ibRratqPtNmzbjt1uh3OOaRzp+55pGvFecsCDn4EkufbWKmuY5BkLkMmGxYfANAdljyqcXaI/ZUoUdEky3tG4Ar5iD1GZa/F75+u7rzNOnXFKnuH3i1PrTXb+vH7wfPXVGaf+0HBK5mF1n2ec+sFx6oOHjbfffIOERYXFyNOf2Zt1KsWTPC9d6Kfjgc/nkdPpyKtXr+k6kc8reYWrxbcOd63fR7wqoDl0zjjqpqZtWmKKTJMwQWIIjhQSQU+VMUaZyGkW/2FFbsw4dcIq8SGhU3k+ua9VPuD6yovAULS7Q8iDDFYdQwaIPE5yaqwwpl69TZlSlrC25NWVkJSCjHOVnCpjDqNX8jmEcpKX1CR5H3HaTXmGrDve9z1933M6niSnOIXMH7CEB40sFu3YKY5nOd0KO7Y0vClMSHY+NjtmnU+XwasuDWbyazFZvhCm2fPm6695fLhnGgb6U8/hcGDoB2bvOZ5OhJCo26yjLp2C8/Xt+VqFBTNrksc9SYF6VqpYfGC2RQSYoSymlJvjGKONv1QiD57YfjRZ0x6c5tBap122M9BlG1DfGYv3Xmzs/eda4IInXryswXyvUOoonozG6m2LD4kZyFJR1sgAUlnpwrt0Uo20daMbBMM4eqYsv7l6T1dVbDZbka0sUqS2aJAbKyFdV9fUVS1sZlVLPmzxC/n+F/Yuat56Qgr7vPcE74k+koiaBuKZveSsSt6qZ548s5+Z57kwSz54fAjMfpL0lZi4ubnmZz//KT/7xZ/g6loUbLzk3eeRFdYqEHS9BCub0TpEkeusbNmMCnBE5tnTtg2brqauHDnNoIxZlhlazY1shLWotta8dbvkj5+vp9cZp967zjj1e8GpJwdVY5g9vH13OuPUysbef66/qzhl1gdyxNbOOPXD4tQHDxtyCsqNcTKjI4NbTp9mGWjvl3BqPgzFMfD2m685HQ88f/GC7Xb7ZMKzpvjaaeVFMU1TYVQyy4LJEoVyevSzhwQuyxaqsyNC9JF5GJnniappJU/WVXrq9HoPVbkPeY6nJ2BhBpbDXS4+zJ0pQ4hI1P3bTiQ72DxOC3OQ5cTWz5z/X5br0pExltCcQT7fmQpTSfAqRNE8Xo/Z6XSiaxuSMRyPR4ZTzzAO2hU2l1HJgsqRhgIESdmPuOJY0uKwSmDRZvbLlmfLhVSSGy1gn8cghCiBfM2NjCERIkxBFuw4jnz55Rcc7m+ZJ2kaFUJgGHr6YSCmRF1VNE6KDJN1jMwC1qzDyQs78940Qj6gp2UhqUmRNfoziyNEYJIcUi3AMqtnl+ec1S5yiFYYlHkGiAt7kn+WKPcoH6xzbSBkZ/ot5msBI7nllKknSmZtfjv9cc59zXb37SuzEmntPzAWnM6l5L3Kc3qVUKwrx65rqazjZCamWcamssv6aRvJd81Sl+XeURbKCpvkjNPNoeSkSsqGFOBJunrUsZE3yfnIIUgDNesCofJFV97PM5ZEpayTsTNhhlSpXGZV0bQNcw5pTzOzF/Wem2c3/OKXv+Tnv/wzUjKcDpLjP40T8yzdpY3aulemCl27dR1L2kA0OidWwTlIo7dp9oxTTdtUdI2jqavVRq7wsottkgBh0rb7LU3bFpWl8/Xt64xTcMYpfu84tWbpfYjc3R/48qsvzzj1h4hTIbB+k6ZuaFw84xQ/HE598LCxdtDiwOx7xi8/9xoi+q5Te3796XTCf/UVV1dXXF1d0TTNyrEtRpCd6TRNzNPM4XBgu92yv9hrYx+Z2BgjfpbTYFYOSWlxeN4HxnFknCacFW3zdT5fVrdwrtawsDADa4B6f6FjVMlCw76iokF5RiG33tM01/eIeo/ZkefwnCxcnozDwmKklZNwJCeLz1UJgsNYh0up5MwaY5nniYf7O46HB0DCZDHlYsEFMJaHQtgua4vWeFid0LOxGWQRGlVgERCKZJBfHLnFYEVmMH+MNTgMxjiSzQ7EELzn4TQiiiyeh/s7Hu7vmKeJ4APDOEg3V0TysKor6ZBZi0QuBoYRUghPxk5lsDMXtsxFPq2v0SnbqUGlKA0hhVXBl9cCSAX4qAFOBZmEYclRTcr0x5Ir+pSFooBkZtwy2yL2p0DOol8ir107YlOIL8jpIEvhoMgYKiCsvpufNCr7s7brPLfW2OK8c8MzgLqq6RrHbtOxqUU6zyKsiBkNTV0Ta5knq47MmoQxUsCKNUV9IyU01cVio3QpzahrNEeVJG2FrNVGYSlhvRTfpeSxNiEZArLJCSkx6yYyRinIy03Pwjqnuaz73NSt4fXrj/j5L3/Jpz/6Mc41zNMoOd5RNkRj3xOUPc2hcfF1aKFszvWeiTHIZlPBa8mr94Qg7Pbc1lxeVFxd7dlsWqQfQJ7fREqGFAM+St57VcvB7f2M5vO1XGecOuPU7x2nzNPDxjR53ry75d3tuzNO/QHi1Dz5QkSAnF3POPXD4tSH+2yocSQN965DrsZoAZYWj62dI1ByXTMr4pxjmibevn3LOE48f/6ci4udGv9i7DmsHEJgHHuOxwcOh0eGceDm5oau6yTMSSq/G9Xei75wXIqettudGJaGDSGs7tOU382TvNQQiQPTdDddCfI8HjDZKVtwlcUEWQ1SHJRP/yuHydKLYFlAK+exWvCZ8civtcaQVjJ8MQlIgbBuzorTlKtmtIbT8YRzjqqpC/P8fhpBdnT5a3GAWtwUs/O3VLXmQhqrLJB94ohjghRlYeYHMKhXUg8icyq5fc5VGFvx2HsejwMxiprL1dUl8zQwDgN93zOOo4CWdgJt6rowjMYYmqYCA+OIpAkkKeAjg+h3siXffa3D78EH3ZhkveoMdqnkZcaYVAIx6muNvlpZPVXcWt+BpDHImBT2h/z1yoG/d9vZwcvnJP1vYZ6ewFRaWN38k8SSbpA/d31vxghr5aysC1dZmqqiqSsqZ+mahq6tJUVFbWXTVji3pT5N9LMnK4Tkn8vtLQWza5Y0ASbLAxqwlaNpaqq8odKUh8y0zdMs76FOXro1x5KyMc8T0zzLv+MkdsMEKRGMwUdfmEVMwljHxf6Cn/785/z8T/6My4trhqHn7nBLUGc8z3PxYZJXO4kEac5NB4xNNKkiZe30FfOdkthBVkXJOcfCeCV8hGc4LvYtdeXKOpHpqWlAxsbmdIenvuN8LdcZp8449X3g1PoAMM9S4LvddGec+gPEqaGfcStbyFN+xqkfDqc+eNiQwcssUVoNbDYZihEVtiB/aJKCt/z9EAIYg/ee29u3jOPAy5evePbsujQlkup9OfXN08DxeJDwb4qi+DBPXF1d0qlU4ey9nuITc5BFJ51XJR90s6l1QqYShs55dgm0kC+VfL3M3OgZmpQWveKsaJI7JWdWooSTbMKgYeaQF11CHNtTViA7Azl5RskFXIXI1ydb5xSQQpa6k5N3ZtxAG9dEua/KWay5oqoaxmFgnmcN/VUFYMsclo3hwohk1YQYE1XlqCunYecl13Ydak9JWALrap1rddNBGs2EEHQRCRrKYkxMAfrR41eqLU3TsOk2nKojh3iQubSWykmhZQZiayksTmUtqamYZ2EwknWkzJqosyvgmN1W8Tmaj21NmfeYcm5l7iAcS/6mvIOG6R3EYBSgJK0gh3WfFuct66k44TWLtFijqm6k1e0ZjRQYInGxn7Lyco5v+QEGnZfVOk5J09fyzRTB9GXTkhCWxhlR5ei6hv2mY9c2NLVd1rp+4ZyhbSqcM6T7wL0CZ1TnLCAeSdplOI93lpTMjg6kuNbZmqpuJKddNwzZTq1rCmvtnHtSNJufL4ZQmGsplBuJXmy5P0kO+DzPGAOb7Y6PP/mUT370YzbdjnGaGMeJaRyYxn4p3gtBgUjGNcTcBE0Ox1XZsHqyb1zuaWEAsz3IpjDSD8KEPj72XO637HYbutzhVW291uZm1iwbo/P13dcZp8449X3g1BOO1li6tqOfpjNO/QHi1MZZKlY+QYvOzzj1w+HUh5v6qfMuYVqTQ9VPF2J2iDElbAj5xU9Yivy9fNp+fBT1kNOp5/XrV6JNTmYuJLQ8DCO5GVAicXh8pB96Li72bLc7YtSmQkly5aZZTpZZ0SKHWY2TYjsZC1VZyCoiyn6snVMOw+fbjtEKc0RmojTUFqOuBWVQkjgXeR/9V59qGYLFwQi4ScGQGMaSl5tzYcvQ64nZpIStHI5K8uNiIoRZjUvYq7qu6bqOeZ5Vg7xnmmamNJTPzYZVGhclAWnnHLV+Zl03cj95Do2qNLynKJVB3FlXmLwcLrdWHJCE7J2E9JzFzyM++uJQY0wMw6DAI/mHMSUqDW3mQkln1DmWT5dcxLpRpmHyBBNXzm5l/CuWZNmA6BzFJN1HQcE4O2JT7AMMJmbGDVIFcZYcTWstlQIZxqzWjq6jMoZWACit83GXHNxlE0Fh8JbNBcvaW2im8v38jAkjXVNT0iI8vReT2SFT7BUk512WhRRVOmDT1uy3LW1V4db+Q7/OMomVayFGbiv5gfczfppIleiCmyjjYZw2DLNWx8KSsMLGGYurG9rtVjsIq3So2mPTLpslY7L+vYyp04LTEEMJT5fnchWJrMQDzlZ0XUe32Uoeuw9M48gwDoxjj5+l0E7ynyU1IXivKQeJGCX3tnKOtmmWfgsZOFNmnyWXOoSEMR5phlapMpGstxgi4zjyznsOxxPb3YbrqwsurzYii2qMsJPGiBTiWY3qb7zOOCW3fcap3y9OWbfaHhmR752n6YxTf4A4tXWGZl6iblI/4c849QPi1AcPG3nG1kt27ZCXXzOZIvnWO+SwijUGrOrxqhREjJHb23fEGHj27Bnb7Yaqdkx+YhhHRKJwxW4YQwyBh7sHxmFUJ1MBov9bOSdFKtaqCoAWRjmLKxrMGnJG7QlT2JIcZithb9VLzkaQF51z+WSuJ2C7nIlFyjAUB5wdeGYLUgIfvIxDYRbkvedpIqq82vuXKE1kdoGyMI01WBwmirShUghUqqCw2WzYTRKym6aJaZ4YenGW2fFaLTiz1tB2Hd2mI4TAPHtCTLiqEbCrXJE9jKlQZirTmMOFSTWdRZlIFAoMVRDwd5XDh0RMDlc1tE1TgqjGVUViUhRNJBcyMwSZjSGPQFoWTja/urEwO4xRucEng/iUSVnGFiDifc5FYFGNUcdGkrxNY21pxCW5kKmwSlnxJG981lJ9JQd35XSfOPLV2lm+XEkE6o3m8GdmXFZcTPmc97sOo5sJA9rF12ENJdyaUsAkS+Us27Zlv2lpnBUm0K6LARegyfrerqq43G3YdQ0APszMYRLGLTis9Tgr0oJV02KNqgUZcLVje3HBsxcv2e72ZfOUYgAF4qSglUP3wnLldAvV1DcUYFj7m4SwiFVVsdlsqKtG2KRhxBqYw8w0juK854noZ1IIoujig4aqo8x38EQfyjgmtXObKCxy3jgUr2ko4xVUmaRSBtZaSWkJ1uLnmXGa6E8jp9PI8xfP2O838r7GAJbcc+F8fdd1xqkzTv3+cWpd7CqbzoRP8YxTvP/l332cqqqKKho04CMqT2ecKs/4Q+DUBw8bMcYSLlob3HIyovw/qIHDU+OEFXNCCWFbY3G1BSIPDw/M88Sz58+5uNjjfWAYRrL++PI+2W9Ehn5gmmbqWpyVdHnU0Pi6k6bRoh8yQyKGUvLc9PRvreb2hqXzYzkN6krMTWKchtysyTrmqrduROEiA4AQBOZJ+NNVEHHl9/Jn6AoHNB81OwDEScw+kIgFPKxZGqphkNCejVqcJA5JVBMcTdfiKgG4EDxdt2HQEFnSMFyMHjxUTcO2aWiNYRhHUeeonXSvzKpD1uIymMREcpHgBViss1hXCwvgnITcrBW1BTXsafZ4L7J7Uqgkm9ar6xucMYxDz/F0pO/7xX50/J6Eb8vYZ+ZOCvTatmGePNM040sTmuwcv+vkXTiVoo5hxePpx6gSTVAJvUxYKEtkjTbl0XcLYcldFNtfMYb5lyKLg9VNQKnXXDndpBskKZhb1l9+/lxeF5UZShpeTyn/PDNg8nvOGU1hAF+kM+VdNo048N2mZdO11C7LiC453flZijynkaLWtpHDhjPIuqwSJiYMkeA0XQVD01i2ux3Xz59z/fw5+8tLulaapU3TXDYAxor8HtqJNzu+/LlW+w2kbBPWKYMjG4PKOvFHhXGMjIN0HPbTpBurVIAsenXeOWXFUBRGohF/4YzRXFyxWZkw1RbPPi6lUqgnSieWZBLgCQHmWf2HWdJhcvrIPHuGceB4PPLixTOubq7YbjqSFRnF8/Xd1xmnzjj1feDU03OqdJbe7vbiR8849QeFUxL1WkbScsapHxqnPhzZWMnNPTnhrldhNqAUIejJfpXXmY0ud0WNXvLGMOBD7kbacDwe8bPn8PhITLlBUFoOXmUhaGjNSIZg8BOTUgFZFs4pUGTjzR1Pc9hrnifNmZWwUVU76VyqObu526LJShxpzfpk2cFc+S8ORBQi1BHAqpOpKoNoaM1Y+cwQAskEvUe3Cg/CPE/M3mAS5f2FWRI5xJSCslyyCLM6g3GV5BLrM8Qk3VMrV+sCCKRUaV5wRatFRtLl0hNDpGmbchpv2lbymTNTY9QJpViMUOzXYl0qBplP0ItMYyyAE0KkH2amaSaGhDGV/q6jqTuquqHrtrRtx9CPmXCRuS+gG5+wRQvgJkyC6/2Ojz57zeHY88W7ey1Cf+oAM5dkFusqs5dN3LCwoOs83yc1UOoQc/g8h56Lg14XXxp1SilhrNhMWr5NtiC9Qf3cQjo9uf/8DOu1JZRYHptY5sCaLOeXZQ9D2TLkVIiubth1LZf7LduuEcZIHSC6/vMzWbO8Lo9b7kC6bzumFOj7AesqrBGpQAx0mw0vXr3k05/8MZfPnmHVXkMMyj45nMvygYmkGvMoWJQNYJYf1FB30DHP9+WcdEWtqhofPFM/MM+e6D1hHjkdH0kx4Sq9/4yeKUpIOkRiyooeYls5tJyZqLVPXOxvNXWZYTS6uSNPYiTGJRVG/mhhYBTd9Xn29P3Aw8OBV69fsd9vcdXfEoT++3ydceqMU98DTmWFKXTc2nZD5yNh8mec+gPDKYukDOZr0zRUB844uN9qsQAAIABJREFU9QPi1AcR7Cc/+ZTD4cTp2JeH0aOoGoP865ylrqWdei4Iy5Xp2ZjyyW7BAJUpzPmYCUIMPDw8kFKSQidlvfPzi1NFWYcEqtAxzzMhRpq6pba1hn0rnmqui1Z2VnAwxlDVDZUW/c3eCyNkHZvNjoQoRqSwMDuLIxdmKMuVGYwKe8tqzE5M55L8AIlUVmNVVRgd/jJeeuLHZN1oT4y+dMXMi98lOYnmAiejU2KM5P9Vda2FuqLPLPdoqeucuydhVFe5wrB5L0bUtRuqqiEm0RvPWt2Kkws7k0JZVHK616nS8cnh01y4KBKQgRgS3ieMs1RtQxMXlYyAJWLpNluurq+ZNZQeYpLGTtlZxrxwZEy9LoCUEo0PTEPDrm350atnfPb6Gb97c8uXb+957Gd88E/0yJdLJ0oZmuJONeQvC9ciuJSU8UvFAawD4TnnNb+dvuWTK5X3L+ax/kt+nnJubv7eylHIwyugZSlMCnOVQ7nSSVUkHUsTLsQJGsS5t3VdwtK7rlWWD1XbEBBAn78wRsZgyeFh2aAAbC8u2Fwb4sOj5DLXNdvtllcff8JnP/4pNy9e0Ww28gwhkoKAcDBLXqtz4phR8LfKyKQkjdvqRgr0crfXeZ4kvSQ72Rjpjz0hHAjeM2sIOkWPiZHaOSJZDSYX7QW1U3GiUsQrG5iua+narjDSsGxQ8mYJLSzOc5MKNapg9MTSZB5LcaExeB/wfi7PNQ49h8ORh8dHLi8v2e92nK/vvs44dcap3ztO+UT0y27dOktV1STnzjj1B4hTVg/9qG1vdzuuYjrj1A+IUx88bPzxT/+YsR959+4d33z9jsPxoM5cNoibTUvbdtQq9bZmlYqqhMkayzk3UYw/n6zzgKxD3jnMDUuh38JarArikg6cNuepm4q2aQtTU+Q4WQZfTn9SUBZj5OH+nocHya21zrLpNnSbLXVTU6mkWnbeIqVn1elaqjqvKMrvLA4mP59MYtLp02MkzuVTuLJRlSsyhaT83LnAyRV2gKTjYxxVJWGrpMbubFWALhjpGpvZr3yltBh7nSpVRYhY64nRYV1FVVeQIt7nk66yfSEKKKVEQJybSat8zZVXyk68sDo+lCTklMDaCpeSNpoSG9hu90xDz1A90nUtF5eXyvCJ6kjOtU1RdMKDNq7x3jOMI957ulqk724fDzy/ueCnP/6IH3/yki+/vuXXX7zly3cPPJwkNB+L8sXKAStFmUgQl5/oskRyhtFTPxJ6TBoCJZU+IusrZUZH49olHmBMAfXsvw2QO5AuMJNza1e/m0QmMKc5ZDa1PEcJf8ocGWdx1mBSoq5VJrARZqWtpWtoXTkqZ1SCc0GEpHetSAbJMMX85hISHqIqcjQb9s8vuXj+Qhz45SU3z1/x7MVrtrs9uRtsSFmPXA4q2U6ssaXZU4wS4m3qBleJL8mdfm0mk4yhcjWRQJg90zwT5pkYPNMohXSGpJKKkoph1Z/whJEWLf1pmphn2eS1bSdSh+rLclFuvoIXpodyYKYUO+aVkBJPPkO+p6wekZBD6FaKe9M845UjtNYy+4m7u/tymDtf377OOHXGqd87TpmyrV9eYwybbkPY+jNO8YeFU7NxzGUMDabuuHq+PeMUPxxOffCwUdUb6mrDZrvj+uaGu3e33N7ecjr1tG3HZrPDYEoeXmFyoDi7bGzygJGkxm/s4tyjOi9Xqublyt//dsg7h4WVPjK2nGZTSitQSCvna8p9hSDM1MP9PafTkVyZD4lx6DH3d2UhOOekaKhytG1L13WqIuKomqqEteV+UwG4nA+bQQudUDFMGaeQEqSINU4nMkuULUog0nBGFT/UCRqyMklNcomgDFjJD0w5hJsbEy0shM3GK9WD1HUjBXmTwftZc3c1tB+jeFwjIUhrKnGmMQg5lnjCmMiiWnL5jXgqQv65M5goRhxDgmioK2mAZayl6Rp2l3ua1vLs5pqHuzu+bL7gzddv6E89s/fMPkv9yQl7nr0683wKD4zjRIiR7W5L17UE7/nsoxe8vLni7d0df/3FW765P/B4kmZas+YyZ1YQYzTFMRXHK5esRpOMzmFUJs+UMQctVMvABsv/rzx15u2E6UkFADPwZQ+wZomsXQM5VMaRkiF4BU67yPeVIraUiERsMqJOUYtcbVtLncWmbagrJw7eGEJK+GRknaotJGORrFYjwKOfYcxSRBmKdr2jalo22w1XL15y8+o1m92FKMConwjqTIMyiWmh5Ap45fVurBQKVlWtWvFWmd21LGYC74njiB9H5mlUxmfVaNDIuvLzrPaXNzempMOM4wRA17WlcHXRH1fGGHHUWXaw+CujAG+UP1v9TKZdbKD4R2RppRAgQlA7SfraHIb3wbOK/p+v77jOOHXGqe8Dp9aXs45Nt2HGnHHqDxCngjXENXNvLVV9xqkfEqc+eNh4+80t292O7abj+qZjt7/k6uYZd3e3HA89p37Ae480BVkVxmjIZc0ULeFqWf1FHzgbuZ7izOp1+WdrneLCRJTCNAlrSb6nFLDI6SsgTZisLrTINM4cDg8cj0emaXxaXKcLTJpC5RNgwPuJaRJFjANaxOecGlZFt9mw2W5pm3aRBDS5uDDhkyeGSfL9rCOHt3NRoTA4iYqlqIgUiCaiO/MnjEwKEVMZzCo3LufJZViLSQvBsppGXiN5HlJc1EFsXjChMEm5a6wNVlialBYJRishwpQyG6U2nBwmUfSWSwdSxLHnxWAT1DEweAmp1pU0PLLWstntqNuGHKge+xPXL55z+dvf8uu//jVv3rwp8ohew+9PyJlEybU9DRPb3ZZXL18wal6hI3H56Uc8v7rg8zdvefP2jrcPB+5PI1OQA5DkQYrvzsoqxZWuFixJwqgpGUJYNi7Z/8q8gSEVu9UX6no2C9DpnOXPL+xL/qG+puTgmqTzBGBJUewp54Iu/IT8jjWJqpJGQ3W7FI5NMZGmgIu20FDGivymdQ6bHAan+a62rMV8/0+17GXe2+2GZ69f8/zFK/Y3z6nbFpIhRi+AO3uM1U0GslELyrjYmEjWak6syjk6ycmuq1oYJmtwtsJiiGHGzxNhnoizJwaPiZ7KAFaAZ/YzQTczMQbt5KzdW4NKDdaWtm3ZbLYs7NyysRQ/pAV6K5+Wc8bza/IVjSEo65XtwhhVxlGbLak+urYSqWyQRN5SPjsGWR/nyMbffJ1x6oxT3wdOPek47Sx109DopviMU39YOGWNwQRfwlVN1/HsxaszTv2AOPXBw8b9wy2H44FNt2O/37PpWq6ubthudxyOR27f3nJ/d8c4DgQ/kxuhuOJI10oWFKcFqLKEDFRREckh7CeOS09dZjHq/L7ZqFxuMKLFMTHnOhr5nP505Hg8cDqdmKaxMClrcFhOd3LmNhomlpxddbxoh9owwyQO8/D4WAr0rHVUdUXTNLStnDa9FwbDGMPl5SV13aiT1GfSCc6KCeLULdY1WG8IWqiY844TkZhMef4MQovGdl6+kIwlh+6NEabM60nZ2UrALaZMYoihKMtn1bmvm+zIHAk4WGOwleq4s2hEExeWI2WWK8+fsg5+VkCzliEtp/rdbsvzZ5e8en7NtmuZppE3b77k//6//g0vXr3mi89/y29+/Ru++vIND4cD+JyPTfZ7pBQZxpH7x0fm2XN1eUn7/Ibbuwe+efsWQqTrWvbbDc8ut7y9feTucOLt/YHjMHIaZ2afFTMkZBjT2kZSHt3CABpUFYakY57ZU2WGCpupAEt2wBRGNTuI7LfFBrXwDQmv5kLAoi6jNlBV1ZOvsxSiHOKMqFNUucdJRTKGYCAagcsqqbSksZKLWS+pJSgYW0xxRhl8DHkDRlmbL159wmfNL+i2u8KSRE0lkPQGVdDAEpNXu0llDRtrqKuGrmtpm0607o3UAIcQtWh2xodACh4/Dox9j/ez+J6sr6/NxSr1B9IETF4bg8xlXVdUVS12bFxZl4XSMwuD51xOS1nsOf/7fjpC9k9k8FabEMASvzhrWLuwetn/hahkYSR6yfOW8f2Qp/77fZ1xCs449fvHqbJpBggBN0+0KdI2NTevn/Hq+TU7xamv3nzFv7664uPnL/ji89/x29/8hjdvvuFwPBJ8Trtfsf+AmSbGx0cYJ242W9rLC267lrdv30KE/fUVV23Dq23H27tH7o49tw8HTuNEP3pV/qLglKTBfbeUbowRTz74RBKuMPWFxVbfl32ekvjLe+iBLhpIzrAWJMg9JWSTq9KrGr3KNtDV9YJTdY01rsyBtRZnwClOOVep3clo5YigM9pIr6q0F4pE1MS6RGgg10johGKAxuQIjVw3z1/x2R+fceqHxKkPHjbypuV0OjIMPW3TsNvv2W23XF+3bDdbrq4vebi/5/Hxgf7US5FUjNjSFCSsg3tl8tfh5hQjk/fLydosG5vCQLE42+UEvlooVjzR7EUdJIbA6XTieDgyjgNJQ1s5BJ7Z2LxxSrogcwhYj/0rZ56dWVq2mwlSCiU/NKVEPAQxxLqh22zZbLdcXFyw1UYw0yQKI5LT5zSkK/OMyUAWi+Em64R+wUAeMyNjhjJz77luGRurL8sGWS55BgnZObBRwn2VI/rM0Gk3VqQjrVmdjuVel46RScfFGk1DMOjiV8dTCsNQS5R7jursc5GiqxyvX73kRx+/5M0XX/FP/9d/hnEVP//FH/GLX/4p3e6SZ68+4Y9+/md89cXv+PWv/i2/++1vub97ZJon0gp4jLWchp67xyMYx+X+krqqudzt6PsT4zTy6uUzfvzpR5xOPce+5+t37/jVb7/k69t7jv3EMM3MPjCHhA8JH82ipqHAmTXvK2dJyRUpwZg0xzPPSmY5kxSR5WcXh56AiLMip0jeRKhDss6qjjbgqvLzbIA+Bm3KsziVSqUcsWtljJzSIPnO1jlsVeEqzfW0ou1vy5pb1pdRX7A4rKURGkgBa9NJMd3Ny9dsw+WTTRE2kqKuY6sDYSQM3bYtTdvSdp2yQl43dw7jZIMwDZN+XzTF/Tzip0lyXlXVZp4mYsoNx6qyjkz2DckSrSO5BBYqV1E1NUt+fZarNIsTjWvGO5Si3XyQy6ze4p/kr5zbuqiCLAdTmxy5S3UwFpMU3EIAYzGOkuudU13K0jlf33mdceqMU98LTq2uj3771/yn/8v/REQiHvvdhspVzNNMJPFnzvKP7h8YpwkfAuPNM05Nw+nULz4jP9Zqg946x0f/8t/w7DdfUleu9A3x3pP9rIgLeHwy9E3DkAyTrcgKYDki9HQruTrbpPX31riTf8mUg1z+Vnr/hcWG0/K+eTbNajObf7h2WPnz0kLVPek9AcW+zfpGdPeaD/A2p1+Z1WE7LlEreUWE979nREHrZ6vvX948Z3txxqkfEqc+3EE86qEvBiY/MY09p+OR26pmt9+x2225urpmt9tx1V9zfDzw8PDA4XBinn0JX5HW3ToXx5zz9bKxrUxs+V56GqpeM0f566qusM5IV0jvGfpe2KFxVNuXMGKMQYt21BGuTvZlXqxuDFG2ozjJhS3Ii3EdRrdWO6Lud+z2F+z2ewmr1Q1VlTsyygby62/ecHd7BwmatqNpRB2l6zqcNaQUyKs/EyJZKQOTped0LSjbnY0kL2djDLIEXBacIDdbmmdPitC2orKCMZLymcEiyeKzrsIlVoAqCyvnP0snTF8MzNh80pZ5s04+nyRgI47fUtdwGkeRMXRePs9IOO9f/av/h7/487/gd59/zjTN/Oa3v+If/+P/iIqKttmy//QZL159zM9+9id88/UX/NVf/jl/9Vf/lrvbe2KUhll1XWGs493Dicdh5lVdsWHDttvgXjxnGES1JviZaTcy+5mf/Ogj/p0/+Slv3r7lm7d3PB57DqeBu4cDtw8nDseR0zgxBUl7iCSSXZRMgo9SDGYNJlm1d3EimRFxLudVxlKApiZX2IqkK7atK5pGmKBhHMg5opil8U4y4ELFNEoOs6sWuUg5VMhGzK6+L2NjlxQKKwcal/W+Wa9Hg+5QdAXIvRlnpUDTVbTdhsub5xyeDwDUbYdzLSHMhDAp21JRN7LB8MgGrqlrmlqkPo21xJiY/aRNzjymBtPUgGEeRw73d0xDL3aV9wFx6TXgS25tEu10tSdjkOLZqqJtW2H+YpZzTPggYfNpmgg+FmcdoxQG+piVUSR1wOum1DiJBuWxKoo3yagvkEZhme2x1j2JSJGQotUoDKrkGUOIRlRrUvZ5CvLnDuJ/43XGqTNOfR84ZTYbojGYlNgdHtkdHj9oh9ff9c2uBdoPvo7be/nz/+XKKmh/r69yKvpbvvfkp1LP0W3POPUD49QHDxshhOKxsgOOMTCOM8Nw4uG+FQZpt2e/u6Zrd+x2lxyPORx8ZJ6mFcMjE7lmfdZ5siBOxWoHVWIOzywnsPyaJY9UwmjzFBiGI0M/4MMMKVFVDcawOvUpFZSpYT1xZyf0RBtbG86YlMrpGpbQUz6hV1XFpuvY7fbsdsIQdd2G3KzOFmUQmZBue0HdOCDx1Zdf8vj4UMbGqNZzXYlsWtM1tF1D5ZrCGFhrQHvYWLsQCevQ9LrJ1KKfLexXU0tuonR9FKcK0tpemAMx7lxU5CqHMfUT8MxjkMehKJHoZy7zs+R3ppSYI4Qo0oIGzcfVAsBxGPlX//xf8s03X3N7+477+zv644Hh/mv+Ylthmz1mc0FtHFXTsbuq2V/d8PL1J/zkj/6YX//1r/jyiy84Ho7UVcXlxSWH08jn39zx8sUzLtuG2lnapmLbiS57TNINt+9PhOC5ubzko1evGLWT7TiN9P3A8Xji7uHA4XjkeBo4HE8c+xEfI8MUOfQjh9NAP0yE4GX8gsPHgLWGWmUzXbZjY2ibil1X45xh8trYycs9VU1L224wxsp9zC2uqnHOEmJiGGf6caIfJUzrWmHZstSeckdIN+JKCjJZmD6rDsjkXNbCngLkqEZem5A0XC5Rj0pC3U3D/uKKZ68+Ynd5zeebz3XuZbuT85SdNjEiJZKTNdk0FZ1uXoKfGfuBeRqZx5HcFyCkkdFAXdXUBlxKzGOPn2cZy8qppKg6VWuobLXKQ9dNUJLGYfOcOxPLnM7zLM2TTif6YZA8WiPruWsaVS5SiUMrPimZrJ+fMUTsOqw2mbkIE930uMouc7Bm//RkWXJrWTaFmWtbr6MP4Off++uMU2ec+j5w6v5HP2L37/0H/OKf/5//P15/7z/Z75nUyJGTv+kjvuPH3+eVgH/6s1/yl68/PuPUD4xTHz5seGGd13KBJX/VWkLyHA6PjMOozEdL223ZbHZcX19zPB54eHzkdDyKLFwQWa8cxHvSHZWFNYqa/y6/L85n7fjXLI0B+nlWKbBJw4+SEx+ChJKksEVMLYEY1IqpEhkznlTmlxC2OidpbiTssq0qula6iV5c7Nlut6oIUMuEKYODlQ1fzruVXH3D/uKKzz5zuKrizZdvOJ1OBD+T0sw0pcVhGsBIoZGw0vXCLm1atpuNGDMLgya3v4Tv0dCYpBgBOOqmVhBwGo7UTaQ1LJFkI1r0GRwST+bAWoOrlrBcDt3Ns1fd9aihRGEAfFgKjiIWqKmqtrAz3s/c3z/w+PjI4fCII/LZqxt2TcWXX3zO9uZjLpsdfvY4awtAt7trXn1Sc/38Y355OnL37htu337NPI4Mw8CvfvUbdl3DZx+9ZLdp2ceatq6onKMxlrZp2Ww2zPNQ7N5itM4iEqIvoU4/TZx6SbuSw4FnngLH44mvb++4ezwyeU8/DNzdPXAaRzDSYXvTNTRtQ9s0tE1F19RYJ2vKh8TsZ8Y5cRonSZkyDu8jvfckYwlRJO/6yRMrD12iSQKKOTLknGWhByUEX1WuyEwW5qIUjInNkyTP1dn8+ryxyhstSe2om5qqaqibhovra168+pjt/rJsvECYTQu0bYdBckirnFe7SoI2MTIej/h5Yp4mYYlC0MZTQIjMp54xHlWxY1RGeJZN2khhl7w2N0oxa9t7Zj9zOg0cjkfGoWeap5ILu74PNByfN4ltK9GkNiXJkzUObwMmap54XldBE+BiROsuy5pLK39mvcPaeSF8jG6gZNVhUK0iYxbfxLI5k/dc1FvO17evM06dcer7wql/8R//J/zu57/EhUQ/9Nzf3vL4+Mjj4wPHwyPOJC53HbU19D6wuXjO7upGZIut1SJzw+wnlTj1xDDTHx55UBbckHh+c8Vnn37Ey2fXbLqGTV3RVJXUMWS7Jun4520eOCMpP+LHVbI3BKZxYponVcSSFJhpnLg/Hjn2g6R6TROPjwfGaSJiqDWaXtcVTV1LsXaV/fqyFuYI4yjF7yAE2Bi8YFZITHNg8p7ZR0Jmw/VwXOo7jJJYCOSU1F2z1CLl+pn1OrCFGNO0n5hrCbTOwpoSoavqmu3+gqvrZ9RNB8YQq4rf3jyjNwbHGad+SJz64GEjRmnGU1qzF9ZA2VA1iBA9x9OB4/FA09Ts9xe0Xct1I47udDxyOh449ifGoZcuifqezjlscQxP8yTjSn8uGxQrNiTnuxvAVZZEpaxykIkNq2ZNK5ZJx1Kcj7JiCQo4rUPlzulrDHRtx3a3o9EN6n6/o+s6aT8PlEImdXK2WjU5yotMT4Kb7ZZPPv6EylV8/vnnHB8PpWBQNnvLvfo0F+eMvk9d1zRdS9s00qSqla/lNC0pLvJW8prl/bQ9Pcuil4K7qCyX6MInIuizBB/wsygkzLP+8RMpRUKQRRO0kDIVWUWKUcaggKygZADHDF5C3KTEV6+/+Of/43/13//n0ywLuq4cbVMLMIRI226o264wYAv7ntUadJ6jFGfN00gMgf/dOf7nTcd200mhlctqKpTFk9Mgcl7vkyvlkL+GYOOSIxlj1DmFWbWsMwMwzbOOSVrynnXDIGNuygamvLceHoRhQ9mIRDKGmHJjnkwWqcOImQF9ehk1cpliU34np2JlcGe1Hr792Mu9GZPZRwHQummpm6YcWu6v3v11fh/rDDaB9wFCxFRJx1zG2avG+DxNTOPAPE1YoOs6TAI/ixygnz3TPDKOI4fDI3d39wxDX7q5ZiYy18pIoVximifuHx54uLvDR0+lkSWjIWLxX6sxQmUCYyQkkaecQ6Spg6j51BVOXWXKY5kjOClpSwJ1KHm8s8+JEjYvVmUXsLRqD8ZIqsaTwTegbY8pk3C+vvM649QZp74vnPJdxVeffcwcDG/vH/n1aeTrh0fu5hm33fL86oraJW5v76g2F3zy8WdcXD+XOrZaotE+RLyf5VCpKk7ezwz9gdPjHYd3b/nXw4nnD0d+fH3Nx9c3PLu+ZLfp2NSWxlnq3H/CSKqMsWCSwQOWBEm7q0cRBxAfGoqMqomQgsccj9CfiH4GH6jHCUJk8gFbN7i2JRpDr/NbOYnQj/NESCJ9Os+Rfpg59QOPx4HH00AfEt7UBByzj/iwHC6yuphB8C3GJQpojcE6oyYQi08mUQ6o5XCd/W4IBfKWNLmEq8XPV5Wj22y4ef6Sm1cf8W5/gTUVufdNjBGb0hmnfmCc+nDNhjIl2cFmuT5hBQKNaTBVdlLSWfV0mjj1R+qqYbfdsd3tuL65ZrPdsB96+r7ncHjkeDgyzcIO541YdjjrQrsnebCI2gIWPe2K4oUYrKW2DVVdKXsRtRlLJDO163bt+d+qqgghlIK4nFufWR6rEoGbzYbLqwt2u706SSmsFUm5rDAkg58VF0yUxi/vy7zl2OFms+X1648wxvDFF1/wcH8vTYXKZcoc5lnMIOq9Z36cOZbvLafepu3oug11rSxT20q4TVkBq8YLylgsYuTiuMmLX/7yYaYfB4a+ZxhHAWGdl+CXnFiRQ1vyeCn79IUVtCVcDuA4DVP9y3/27/6X/8c//N/+uzevv/gXThfcbC1HxAGlmDhwYEn3WUA2pafW/f7/Q+IuHd4rxFpysfOBIw/J00Kn/BBPpuDp56T0ZH3lIqvveIley8Y/v09KMg9yUElPXrfwft/9bn/jB71/AEnvv1n61o/zy9J3/DznQme5UMPhicMC+Nmv/vQ/+y/u/+uftVUlBaUpydvERAweHyNk0JlnaYx1OjFNohs+9OKg+75nnkamcWCchqJFLrKJooZijChvYQxVko3EMI70fc/pdOTw+CiMXQrM84yzixJQjsLkTYYxyzzH4Jlno7edqGkIJIzPAJl7iyzqHvlv5eSejFvJTzcLaycHY5GfjCpfWuyuzIMhWfHj6bvm83yV64xTZ5z6vnHq8eR589XXvP3ma+7fvWXTNfziF3/Cp598ysPDPc3nv2OePZV1WANNU9N1HTEmpnkgaJdn11alxmbnrul2ey6un9M/3jMc7vjzX/2ar7/5mtcvX/Pq1QuuLvds26ocONraUleOphEREOmMnaTfRhKRAOOgspbUICInrhJGPlr2zlF1HZOfCSRRDEswezlwJCyursr3JT1NBA2G4Bkmz3iaJSpCzR01J9MSq4TRzvZUHqsHgvXmvcgoq/6sFGXnOZQDU+5xQUIi8gA2z4vMf0RINkOSFCAHxkjndmMN3XbHi48+5vmLj9nsdhLtMMLOxyQKS9YYzji1XD8ETv0talSVnKLNkmuZdNJTlBOzSzktIzMQhhAjQ39iGgYOhwOb7Zbdfsv+4opuu2W/33N4fOTd7S193y/ygspC5cHJzjB/nQvPRN9Y2JkYEyEuDBRqOM4arBH9ZWFMYnHkmQHIjsg5x2azeeJossRZ00iDpIv9BdvtBldrnq7mvAUfmPU+m6ZRVYsk3TA1lC8s9RJSB3W8xtBtNrx+/VpYm5i4v7/XELv8TpF2JT/eInH4fig9Fx6O48Dh8R5Q5spVVE7SeCS0vSkNYTKjL5KGqqygsmfGgKsrtlXFbr80xvJe2CPp6hoI3jPNk7CB06QM01zCh1k9JSVEzz1JQd4UAm9vH90/+B/+/X/y7L998d+YFPmjP/oRP/7XjuCmAAAgAElEQVT0E7bbjqw//fgwMI0R6oZuf8Fmu1MZSoOfRkKc1W4i8zSrDK3KzMaAn0fG4wPj/S30R7Ztzc3NDTc311xe7Nh2NW1T0dY1XVNTN9KltKkdlTEYMhOmRVkhFUbFey9MQ0xMITAHzxwlfBxSIiSV9s71KdaVtKhx8jycJt499ry777k/jgyjJ+tYybyYwoKWBj8GlcJFJfMkDSv4oJEFWZOVderkJd0j+6qoBWsp5g7C+mlJ90crHe2UoKorbl485/nL12z311KQaQx1LQV01sprkk9VHZu2rsWJkxLz0DOOoxbBid+IXp5l6gf604nT8cDhkHPnR1L05X5LkZ6yocKOJWbvmWbPOE4M48jpdOJ0OokazDwRY5Qi27Sk1QzDwDROuLqi1l4Dzjqp0DdGm0M5jJM/yToiFpO0YZvNefqLMplZ/cm+9ruPhOLkTdJ/NdXlCYutf6dsAbmmJjNS5+s7rzNOnXHqB8Apvv76K+7u3mJN4tOPX/PyZk9tZ55db9ntfsLjfc80JeI0EZuWFKXoeLfb4+uaEL0U9sfIrJEYQ4Xd1TTdjvn6OePxnsf7Wx7/8ld8+fkX3Nzc8OzZNZf7HdtNQ9dIxF/y9Z344MpRWSM2ZC1Eryx60oC/SvlmP1ZL+lWMSSWAZY9Z1wn04LrgVGKYAw9z5N3jzLv7kfvDSD967fPR0WxajDFSKxBEGayqZPOae6pUVqRdZ+9VTQzM+ziVFKf0sFFwqhB76kWt1D+KElPQSIAw+zfPn/Pi9UfsLm5wribMgabRmgRriCEWpv6MU991fX849eEO4s6B0zBMjNpoZLlFr2kjTlNTYkx47zFQpPuGXorwbt9VXFzuubi80OZtLe1my+nwyOPjI8PQ64lwceTrQrvs1CQnr5I8RivyXMmrYa+0tkuYzubTmCw8cTyWeZ6/9bxWgcFZUR8QJ16z3W7ZbDc0baPP7XVSFsCRPgaqn56bwSRREbBJHPda1UT+FccTk+Hy6gqDpap+x7t3b5lnaeiy5s3LolNGObNoginpaRNR/UKUiwITE8PwtNFNVdXUTVM6znZdS9N1Mr7ZyMvpOmlYvKFtJW0oJlkoUvg4M80z0c/MfmYaJ0bNcczFSZJL6plC4jjM9Lcy9+PhVNWjrT775GN+9von7LstcQ5gobU1u+s9s4fDaaa/nzg8SlrVZrOhsRtstcXWFSkmxjQSjF/CtQ6SjXh7yVg/43h3y/H+G463X/JN9Yari0uePXvGxX7PZtvRtjXbrmLbNYS2pakrauv0pG+wQSQWXUrYVIv0XlDnHmail0XnMFgDteyAwDp8gv4UuD963t0PvH3oOQ4zPiZMctjY0ESVxEuylmKSmgqbXGFusx43JmEC2JTAG9IkEsB129C0HZXKN85hIkZZlzFGkk/YkHRzseSHkw8eSfpqGH2vly9e8+mPf8xufwWIwyZGbDBUtgafxDklYY3H40neLwTmvud4eKTvT7LRSpJSMJ56aVqmucXTNJFipKodddthnYybsQISblVnYh2q7DVyOBx5PDwKy+R92aBZ62gao4C17pYciZPk3zpn1Z5bmqaV/iJVVXqVoM5abkVYorzxy+swu96Unha/srihVYhZQ9l5k2dSeS3GlMMgedUnI8opaXmL8/Xt64xTZ5z6IXBqOB2xKfLZpx/xkx9/yn6/FZ9moWtr2ldtwanT8UDfDwWnKudommrBqXHUNBvFKaDtJNIz7i453t3y7v4b3v361/zu899+EKe6glMLI51W3d2DcQQDs/FMRIYEc9JaCmu1saL42IJTY+D+OH4HTiVCNBjnaL6FUxKRqmv3LZwCivqhxxMjVLUVnLISkZnnFU6lfFha0grXOBXy5teIjdRtw8tXfwNOKcGQovbhMO6MU0+X3w+CUx+ObDh5g7wgQox6etEUFE18j2oAxgh7G7wnzuLoUkqaDxp4uL/ndDyy20vzpYuLCzbbDRdXFwzDwOko4WvvvYZy5KnWebLrgjRjLZXNRXaSsxu9NhzSTrG5iEgGJpWCJwm9P+0umt/fWmF/NpstbSusUVXVGOPARBqnueopgTY5yg4vOzvjcu7cal51MoKPjJMUMM+jtKWv6or9fk/92Y+pKsebN18xTaqNzlPnjS6e3OwoNzRKqzDX2riShp5zK/sYEz6ghXLC9PR9y3a34wLY7bY4V2sYzuKqrFKyNEeqDMWZpRRxrqLBEl2FqxradsM2itOLcVXLME08HgbuD3ccjxNDP+GnmZvrK375p7/go49eCrM0e1IKWkglYHGaYDhM9MMjKT7QtA373ZbLy5027bHUVYU1UCVK0aCfZ2IIVFXL7uYlzW6P74+c7m/53TfvePP1G3bbDbvdBfvdnouLHbv9hk3XsmkbNm1FXTlhIdXmgwJTiOBjZIoRnwzJVcrKgI8whcRjP3N7PPJ4mujHwDQnJi9REkyU8itdO0Uu0izzbTAlxUpYlHX3YQnJ142jqhthNpyTPFlU6rJpibEieg8p4FyOmKhT84FIjsCANY6u7bi4vOTFy1e8fv2a/W6vDG3UrqZBNiAhlPWeNEzsp4ngJ8LsmaaR4/HA48Mdx8OBcRiYZ1HtysysdZa2a8idlV2l4KAbFaeKZTm0ToJT33P/cM/b23eyjpShFCebmxs5oCqMkX9SVyPOPUR5bd2MRUfdAKkyWJaNl4TwY1lXpXjxva/Lol856JTWTJIc6EyEpVC2uJKyOcs+qmxi32OOz9dynXHqjFNnnDrj1Bmn/m7j1AcPG865UlDlS98AUa2p6lockoa6SIm6qnFVzeCFXTIGPX0tD2utFVUEf0/TtnSbDdvtJbv9JZdXE6fjkcPhwHDqmYMnaJfMHLpZ/o6k6AmJkgPprMNUhoicosEIuNhYUkVAVXuoFYikQDnBk8GT/DyjzJFIjFWVxZhc0CaLORf95jzhyBJuymFZo3nu3geGYWDoT4zDIOyaMSpfZpjnmbbb8NHHn5CIfPXl14zjTAayYiZ6vykX5qykBZdfWZipnI9nrTy/4KA45Kau2GxFc32739O2jcyjc6Xpi1GVAav/JiLWCCM4hyUvVnIsrTangwopuCunbANN2/JwnBnGiePxkcfDPW1b8x/+o3/In/6DX9J1LeMwMo0Ts5fWqzFFDscJ/67ndBo49j3zPBBCoKoq2qZhv9tzfXnJfr+jaRtlHlXtyQeca6h3rc7dpahqvPyY08MdD19/ztvbr3n77o6ua9jvRJt/t9ux3W3pNh3dRm1Ax6UwftZIaFytK0RDP0YeTp67w8hx8PSzZ/RBxlAZFmOgbioMMM0z4zSSQ5MpSbOxuq6JPmg+uurWK6Mjzk10+7OtaQXYsk6yfToLQVLSQsqpWAaisD9e85c32x0vXr7g8uqGbbehaTrazYbdVqR1xXEvEZF5ngmzNC0a+555HEWy73jkeHhk6HvGYWAcR+Z5JKZQ1mnbbWiaVV5q0hQJbWRodcMgeeeOFKPIXMZEP47cPz7w9vZW15F2XI2St583G4XRSWjhYFVSVHxUVlFT4oZ+YOgHrHssiltt22lKR120yK21VK6STY6CetLPKD5G+inK93LDJcOyfqEUAK68OylqTVI0y71b2X6av++S+h+4zjh1xqkzTp1x6oxTf7dx6oOHjWEa5fSrRkOyZYCixFkAyf8LIdDPvQ4i6vC0Lbsu6tyNNZ+CpnFknmZcJbmom82G7vmGi4tLlSO853Q4FieQksgLljBwStjgSSm3sRenVtVSkNP3A8PQiyNVqxbiyVGamUWVDPQic7pwPPnkpuHA6LFRG6JhS/jWOosztpxkpanKkmcYU8IPA8Mw0p9OJc91fRkjYeQQ5PTaNA0fvf6M4BNffPEl8+wXpowMNgazYrvyggXRUGYFfflZpMD36WlU+jb0hODpTyc2my27/Z7NbivSg2kBhEhcGZh2YuW9LrlGwpTWWsnhtKEofBgM8xw5HAdtqnVPDDOvX73g57/4BTfXz8QoXUNdT8yTABjG0I/3qh0dSMnj55Ghl9xbUqKqG7a7Cy4vL7m4uODq4oLtbqP5joaLix2bboP30hk8P9d2s6NuO941O463b3g43HI4HWlvKzbdhs1+x3a7pd101G0rfxoBdKcduBOWyUM/BR77mcdTYPC+sDwhepyx1E1Diokpzpp6AJB0g5TXk+Q/x+S1LsOAk6Y6BlNYsLImEfC0KTe8UhsocyyMXgizMkZRX5uL0qHrNtw8f8Enn/yIy4sr2ZAYIx1P/czj/Yyzlto5uf9JGqfNY48fR6Zp5HTqeXx44O72HYfHB/w8af6rMD6Vq2jrBqtrt6oqGtUJx2QtcCBF7Wxc09SNOLGYCCQqVzNNM4fjgbfvbjkeDhqS1o2OKmg4Y0tTr1xsmG3YWVUsSVVR9sgMWO5zMM0j4zRweHwQp13LvbrK4Vy92tSpLrk1mCQAy0rGUdRztBxP/z+n+mh5qjjtsoaN2EARQUiUHVp6qoB0vpbrjFNnnDrj1Bmnzjj1dxunPnjYmLzHouHXqiqa/It+eL6T5TWyyCgOQ4p4DFWlWvwaGjJISC6lICHSvudY1Wy2W7a7LReXV1L8VjWFdTHGaqFPheSJSdg1h2eNXZxV1KYr8zQS9GtTjBxs0vxBL10ZZz+X4r+cB9t2rSxWZ4okWa7Iz07TsHSEliVpVDVkFlUMDbeHII3bgKK9nQ1LgC2PqXyvqhwfffQJicSbr75iGmeZUKMwE5cGKzl30bCwcmoWZIaoOHKdg/y5dd2o9npFjJ77+3fc3n6Dq6ShzXa7k9N929J2ohbi7CLfmsN3MeoYq6MRbXPJCaVSFZiQGIYDx8NA3w/0x57a1fzspz/l1cuXdG0rIcYQpUlOVWGsIQQw7ii62ZsOksdET/QzfhrwMZACHA4iOXfqB8bZc0Ngt91KEbMqt1R1Qwwjc5iLvn272fPi44Zuf8X92zf0t1/xcLzj4Xikvr+jbSRHuNts6fZbuu2WZrPFtVvm5Bm9ZQ6GOQRm70mJooQi66BS5+AV8C0RVNM/aAqHFOaF/7e9N1uWJDmSxdR8icw8S1V1N9AASMqdIeU+8D7N//8JhRTyilDuDGZ6qTpbZkaEL8YHNfPI02jUvBAi9RAuqC7UWSIjPMzN3NXU1Brl8mJMmKYjQjB7WsqQCPR5d3tWK0hFNKUJEXKQe2cRX29opdBBCjCliRzTU8TxdMQPf/gD/vTjX3A6nkaPASiQY8RBE67nM8p8xdqpSb/MM5b5gnm+4nq54O31Fa8vb7hc3rCuC9DV5HGngQoRDWJ39xCjadDTR5DvGs2wXSs9bmiYSRY2VVzmGU/PLzi/nVGqSQuHZJuzDSkjRKMjoxzlRtkDitAZ6FJU9GTFxEo0rLU2Ut3aOsqyoiwLJBItD5GcWXZddl6+SzIHuEKQb3iTbfiqkJvr0qFRZGu0GOi3RLhRQbdNpNFTXMFlH3879ji1x6k9Tu1xao9T33ac+upho9YGEeWNCwYiI+bYb5Ur8oE346oOPF0ZH1R1OEZ/MO+T4CMY4gIBllJYyDYd8OFjhH/D0Sb2OWBCkNy8uqV4VAc/VJWKHRoiAE9RA1CiOsuyYl2Xd6oaRJUEhynjdDzidDpSvzhF5DxxQnsfjsubCzFdV3FdiGR4epXybK4fzhfihUCDt2gI2vZ8HetKB/DnP/9PCCHgl59/wbKs2zMGnlDDcKh28tQtRenIkTfNQWAAOUxHpl7v7oxmYGlTMd3qwqY0pax4O7/gy5df0VpHTgnT8YjD4YDDkQhfnjKc07epvQC0vi1wCIg0vLy84cvLG84XomP3x4zH+wdM02E8O0BaAxGtjt4rYorGS05YrgJoxzRlCO5RGlEgnvwr5uWKl9dIfffDCSmS97u63YkVtbWGGCKRoeMd7u4ecLx7wNP9B7z8+ldcvvyE9fKK8/WC9JZw//CIx5DQpw9YSgY0osF6aCQZ6Wfhaiaftytas0JMAA1cxLfKDU4DUGVPjrv7e6Q0jWAfYqciC2Ba+ex87giHa8aTtsB/+zokQkRk73g64uPHj/j46QccjkeoKqac8fDwgNPhSCpBqxBPP1fqwktrKPMV58sbO65fLnh+esLL8wuulzNqK3DO++FwsI0Wu6em5Cn9YDQNWMGeocdWNHjjYY3mQFtwFBQIuF6veHp6xuvrK9ay3qwfjGf363STUSROCTY6Ey+gFNuQ0T1uxa03aJun8LVTQnVZ2OG9V5Q2Y10Fi8xEjK37bEgbEk1JxgCXC/baAU+7iwRKI2oDgoLtlht6xyb9GW8R39/wT/Yxxh6n9ji1x6k9Tu1x6tuOU189bOScsC4rLucZ2huiBDudmaSfzT1vjGlABGFXS7WirZjGDYn4g208NzoBM2jdmqUxtRaGMk+wLI1L2nHCdbyo29fBgjR79RGABHh79lorliv5edUUKG7TqyxuCjicjri7Z8fVw+FoHasNgYmbsPBaCq7XCy6XK9Z1GYHCn4OomQeyOFCigfQAg9O5KQk0uJRgjBF//PHPSCnj559+xuVyGeYGQ66CeNdIQITKSaq+JsTSfQmPj4/44fs/4P7u3jpLh3FvOi6KEWBUlU1tasG6kCu4LAten694+vwrRCJCTMjT0egFRxyOBxxPkyGCdlGlSy+14vUyk3rw8iskdPzz//pP+K//9Z8RDRnxYABL87fasKwzHcTxgCmzC3c73WFeZsSYkDv16kut6K1Ce8G6XHF+O+N4OCGGhN46Sik4Hg7kLucJPXYLgkq1ibVAITg+fITEjHz3iPnlV/TlgofHD/jwhz/h+Pg9YjoAQnpEN33/UYTaO7yxkEDoyFujuoZS3aFpQ6ssSOQ64LuotULtnYfxfqjy5B1SS7FixN74cyJYWxldlHtv6LVC0TlXhyOLWx8/4PHhA07HOzrV202YAvP5wg63tbJoTxuRkpU81tfXZzw/P+N6PrP52eWMUqg0klJCMp6wp+2DISGuEiMi3NhZQy4iW8EaaVVbuVTzCCpowdO+7Ij7erngl18/4z9++gkvr6/cCAHDgY8IcPP/FOSkjv4B8u7HuGET+rEg1JVnNlutTxEd8OGg6HcnW7N8b9UKJ+mrwCZLhZtesSAliX6R3Nk0nDe7NceBMkkLiLEbghatgNbWrsg7ZaV9/O3Y49Qep/Y4tcepPU5923Hq6x3EW0PvDeidmtRa0fsynIs7pV5NZs3dqLJISGK4mTjj8tFX43i6w5/+9Cf86S8/AgLKwN10gHUHNx7E0trFOmNG68ockmmYmwOQQL3u0JVpsJjROxfoMs9Y12UU8EBcc92fl073eHfCw+MHHO/oAIKlzjywqCrm6wVn01xe1gWqihiIinkQCmFziC6x6N+7fU4PIgwgNObNybM75KfvfoAg4Oef6ci7GRPU03fv0+YAEGLE3d0dPnz4gI8fP+Hx4QOmnOGqBURPBNXSceqLzU+4CmhMOOAEvX+kokPf9Mrn64zrPKOsM9blgqcvQEyJnObjEae7A5s2pYymHS+XK37+8gW/fvkVL8/P+P7TI/7pn/4XfPr+E+pajNMI1NZxvs64XGZc5wWXZUWpLK48HQ9YZ+rEx5TQLbAvy4J5WchntnlY1yte3l4BCO7uTggA5vnCAs0o6J2pcG4+TA5QiXDdPbDorv/xLxDjscaUx/sf+vcKrKWiVKJsNHB7r2D6Ub0zZ1em0nVLhSqUTlfVnHIczlAB1LUOPW61dUhkKTLt3Kikob1jyhkfP9zjw8ePuDvdG9eU6hlBwJSwkM+aIvuUtNbQloK6LFTgqAVaK0qhJvj57RVvb294eXnC9V36OVHKMbAJVLICuRiZhna98WDzBYGt2WRZaLU1ZR3TeweEHdM7AG2cw7KueH17w69fnvD05QvOl8s7P+F/RuKZRjzQIABGMfYdiv8Q6ESxrZsoAJy/KhtCzaI52yAaokx5w5smjOqbDnYuZgd5FjX2poi2YZAQEBt16KMjadLZp0zECoYNOrd7ZAza0PV9vB97nNrj1B6n9ji1x6lvO0599bDx+vw8nG/yQreg4zOcgxlSGIYp9qAwI93Sxn00ErJqGkNTFNA+XowX5/XOtBCv24YTZ+v3DqZeNxTpHfJjyiO1VFwvV1yvl6GP7CjKlpKy5+gdpTZMhwMeHz/gw4ePyDnR1rpaaqpZkdEZl+sVrRaefJWzxBdZR0AD7AVsnzTu0w1kFCGuVEW5TcHTUAStUlLv06fvEWLEf/z7v+PtbB2chXQBBQwlU+Qp4sOnj/jxxz/i++//gNPpDhLiUNxQKDzpp9ChynF7b96eXm/vOyd4Krq2iuNpxmlZ7L2zcdS6srvo09NnPD0BMWXkNAEh4eUy43wmh1K14btPH/H9D99hWVa8vrzi5XzF23nB+TpjXlas1lSn0wdw4zAl3D08IKSErg1raZivM1LOOMUw0tu1NpR1xdvLE7RViHyPh4cH9Mr0dUoJACkF2qk+UXuDRkEMmZrVskn59a5YLxe03oBuMpo2O2tjcygJDNa9co5dUWJ7+zZu0qJituObhBgpZVdn42ebkwsi1uGU68ibg0kAjocDHu7u8d133+Hjp+9wf3+PKU+IQhSKjasKemno2iCI6HVFrYYILYuluws7ppYVl/Mbnp+f8fb6guvlQr10KA4T5TSTdf2NOVvzMvtjDYUGX9rSvcFsVYdv4Ny71nyzJoKlUOZynhdcrlcGksuFTbgsaIqQLiPBtOGHlW5IKuCoFP2QQMZ6Ga/BbFkBSHT+vlMswihyVEeyjLcr9rtwVOcGivLrsymbyxY21FZvFG9MKhAKdDUpQQvqvTOI2cY3dFuTf+Od9+Fjj1N7nNrj1B6n9jj1bceprxeIL+somAliRT+QUXA+uHh6i1i4e+CNyY0XU7XToxkri7Osjb0hTa6Q4Q1hxskcjsKIpcjDmCznzI2Uau+4XM748uULLue3wQUMwU6rjSd4VcrVtd7I+RPB/cMHfPz0ieoDAAuNrPPjPF9QykpELAZyFfke4F2Xb+8lRp+jbQlv/L7NkLZ7fz+n/v0QAlrj6fZwuMMf/vhHNO1Y5itspSAEKqV89913+OMf/4hP333C4XCCd6/lQuI9bp/N+4ra0Uy2DeMt8wf4t3Mt7TsBiDBuMI/m8JBwN5wX5xxK/fCX8xnPz084v50xX2c6gumILy8zfn7677hcrrguZcgsDsRKeZpnMWMFBEjThI/HAyAB1+uMKR+wrGy6Q6cpqK2jViqALJczXiCIUZCnjLYUzK/n0WWz9W6Bi51oRYBeSYPwok9PLQo6mjbKHq4rg2CmVJ2WBnVpSUMxKbeJYW/8TGsAFLeATefEuZyv8+hMDmBwr0V4/8fTEYcpI4WI6XTE6XjA3ekOx8MBKbJgMUJQ1oVFjIGp4eu6ohZyXVfrYEqHecF8vWCeZ1yvZ1wuF6zLlWurVah0ZGsk5AV/KSVk4y/TOdqmJMgmC2iuR23jwODfUK2Z1uvrGefzGfMyY1nWoUHeWiH/1DjuYkW85AEbiiKycbxtgr3wlrwI2jK5wg2QMBzzQGqNTiPm46I5cPhGxnzMQFLj1rAJwEBWAb8HuXHuW1CRsK2pgZa5/7FAz8DsvOU+0LTeuMHYMxt/f+xxao9Te5za49Qep77tOPXVw8bDwwNqqVQjgECGVvKWZt0cN7YbU/LUXFrOndEtD1RigpgGNidax2l/S0d346u6Y8TffN47lQkbrTVroLJgCLcp7MVifGa3z0VXdAimlHGYDggScbXOkdfL2Tiu9qxWWIObFOX7VLpff0Ng+PUt5cyvw/i9W9EVF3Qfjp9z1y0F1gYidzqd8Je//Bk///wzWu/4+OEj/vjjj/j++x9wPBwGx87vQc0g1B2FG5Tfq825GIri53xPiXqzKTdwXiEi2SnbP8NP6K01pMiF60VXGiaU//EZb28XKp+UhqeXM/7HX39CiGk47mTBc6CSFliY1mSwDRKQpgmqgmkSpHzAsRIdnJcZqkDSht4yUcZasa5XvL2+4P7hgfKXywyo4u7uDvf3d5SGU0DRUatZTWCwzjENJJDvhh1EYzrSbpUdTWvvKMuMlPLQBXfUTZVdudHZPdU1uhXC4KrsEdBXD4A3izQlnO5O+PjhER8/fsDxcHDPYsWs1ASfMjX5W2mY1+toWFYa082l0FGuy4rr5YplmbEuM67zBW9vr7iczyhlATc8xm9PCTls+vwxJcRA6kmQaBxgR1RMtUPELMjWnghqabhcr3h6fsbnp884vxF1LbXe2Bw2+1IYj9aLJW2zIjI2lV7kyO63xiP1TaF2dqyCQjDBC99o/gIhRLTZtHhhHBFYCVZQGV3yz7rDBg8SVtAq1PcPIVgs4freECc+j6emeSki7X4/PleulAN0azS1WgGlBaJ9/O7Y49Qep/Y4tcepPU5xbX+rceqrh427uxPeXt9ovFBIk5GyCWHT3R2ogQ5X9i7FOU5o5nzpTOwUboohIh0im2PcHLWhRCJorZtkmxc3pXGyqzdc2moNZhgc/BQ2LnfDnTVkRnmyOxwOkCB4evpC9Y9SxrOOArqulmZ/n3rkz90+nzvO906c07UhRIBi8AHHfXLeeH2+1BDCQBhEBHene/z5TwlrLXh4eMTj40eIRJTaEaPaCf63b9QDGlO+GA4G40Qq2FA/vtYNZRKTdvNrB+MSvke4OFeUaqx4ennFy9sFz69nPL29kauqipQzjic25IEI074+H7c2ZJrZXRuCBiqRgEopd3cnxCBYloIUKPcWE9U1Sq2oKGMOaq24vJ0hAPJhwuPjI2IMJqcYsZYCqBoaEZEzC8S6cVclRhyOR+RuXGeYIw4BzeQDWy9MU4MoUK1lBEhVRasFrTYIKoIAOQZo76i14Hg44v7xB8oSruuwrdPpiE8fPuLhwyMO02Qcc+rm927a8CB6gd5RVnIx4Vr82jVPbeYAACAASURBVDHPZ8yXC1qtKLXgcqbTvl6vmBc681oKi2strez2FmNCimlodadMeTxHMWgpaqiLI2u07bJWzPMFzy8v+PXzZzw/P2NZVr5rc8oxRbO1ADbhYgAQyFA/CYGOFY5GOXrnPxtAzrp9TyEsduyOFDPAIDiaY6hQTENlR27W5UCXbtZsTsk+0zelMNerN2vGkdkwrsv1drPugweN977Absm4tt4cqtlGZltf+/jbscepPU7tcWqPU3uc+rbj1FcPG9f5ito2RQ0YYjMQDvMLt4iJOwvtHU10pKh8uDOfpkz5scjur9rZzbXXPjiF7hyWeYEaN7QrC3R+W8jmaAsAk7SzgGD8W3sC6OAxcsSUMOWMaZpwujtBoZjn69CVvr2uTzrTUTIc+83TDZQGZt7+wn/7Em7Ro9633+XoUA1b+k03jqw7JVXgdLqDXi/4t3/9N/w///d/x+l0h9PphLu7O9zd3eF4OuF4OAwViXCDWkGMX3fj6YexDRQJAxmAN+7xd+y/Zqdzv2arHW+XBT//+oRfPj/j9XyG2kLS3iGGnEzHI453d5AUt0Y5cVOF6LYIU0qIU2ZKs68AAnrruFyuVuiVME100kkSTnJCSRVhWTFNLDJs5ux6pzOWEDDlCa4NXkqh0wqRxVKljnexrDOCyE0RGdC6Ut/9dGIq+qiGrDV0KB2Gkhft2ta9ky+7Xq9A7zgcJkRRXN6eMF9nPHy8ww9/+gvRldqgjXJ+2RqJTYeDpWuVzrrV0SdXASuGJBqkrSAGoKzsC8DuqCw6XVYWTJ4vTEmXsqJrZ7HfdCRlROlUYyRSlFOGNwGa8oSY6TZac06uDsc9z1vjpBf7s/kRhUg0NIUa7iLOf4+W5dWxttzBuYrQbZAIxr0dTtUQHlcV8s2Zm2yMATFPQ+a0aQe6by7ZRMl5rgiGXhmiLIbMvVsj8t4BAxvu5WluXyJ+j3T4pChs3arVvuOSh5tfGRuA3t+t0328H3uc2uPUHqf2OLXHqW87Tn31sAEwHSuxj0r54cS7mna3vkMbNsfkqeatIt+dP5uC+OnOeLB2Mmq9Q/rGcV3mGdfLFTFF3N9RuQCOJow0LBEgETY64gukhjO6DufV7eQVApsE5emA6TghJ/IKPX302xPahu74c4g5d3e8lGcj0uWO/r1zvE1Pt5sA4dfczMALgDbkhvrq5AB7cIIIunYcTkd8+u4jfv31F7y8PmGeL7ic33A6nnA4HpEynWIwpYrj4WhfT2ZMREa2oNK3d2fpM9pb2IKMMp3PR4+oVfF6vuLL0wueXt7w8nbB9bqwWEsEky2AdV1xPp+xlIL7D1SioByiGgoSDTTivHa/H3UuJY18mjIkKD5//ozpMOF4PDJQxIC76YR1XZFSHDbpC02VyIoHqN4ViAnwewAbMyWpdIBlAbSjFkWTOoIo32XHcp0BkKOZcgZiAKxZWEwZ+XDAOs+4vJ5NCeWK9XolopASYuj48YeP+G//7X9Hi/dowverraPXilZWtMpCvwiiq6UVLMWQKSG/VwIDW5lnLBd2TG2VvNJlWVDqMpRc1mXB+XrB29sballJCbBi1xiZ4h4OTYjQ5DyZFKihGdia/pBzXDHPVzw/P+PLly94fX3FssykqViaNkaXvZTBLU5jY2Jc1HijugFbQuIBhfaxNVpKiNblNcYE1waHvLdTW543qXVr4gZYoapYAGdQcUnIHBPRUu2kFQSxzUZHCOaY1REiPpN7Xm58aCMK3wDIcMpEum1baTx99mFodv1w4xM2fvw+/t7Y45Tf+x6n9ji1x6k9Tn2Lceqrh43R4lyCnUu50GutIP/rJgXTqc8M8UYobFB0ewO3N+KOnioL3RzilpaCLbSUM+7urZX8lG9kuGQsqtYbQow4nk6IMQzZwK5b6ohdXSPby4/280yL9t6pPuBUNGwcVn9mGVbl966/+fet4xZ7MX+LpDE4WZOj34zWPBDc6pnzRH06nZBzpqRfq0P9AU1xOt7hh+9/gOAzrvOCUBMmS80BPHEudcF8nfEqL+jogAQcMgu2DicidzHHofghIggaNkRQed6lhB+f4zyveH654PPTC55fXjEv1G+3JcJFH5k2rLVgnhespSCkgE/ff8TjhwcGicQUdCvViuDIwWShIKBNoWCnzmo/M00HxMeE6/WC8/lMSbuUUE3n2+dumujkUyKKw2I58rRdvk3BIqwUE0JMRF+WGaWT/1qWgnm+oqyWbjZkwdHBXgtKb+i2cIMI0Bou84zz2yu7A5cF8+UVpRTcne7wcPcJ//TP/wU//vkvqJpxvrLILPjGaUroloIOynRmiAGhB2hrWGciT6QadPRKzm9dV9SydZ0Vk7Vk4eKKeV2IKvVOpQ5DhILRPZiKZqOjYLJ53Ch11Ab0Uk2zf8b5fMbL6xuL5+aZ6VSznXw8DtMfdAwYopIszSuwzVzCbXfSzeHb9033XCz4JbvfGDaufYi0maF4A96zBxHfpHjQuokSI53s6kIbihXe3Ts14nVbzdrHGr9NR3vwc78pMIqL7YgsNg1EikWtlULyfGjbyNzwz/fExt8de5za49Qep/Y4tcepbztOffWwcThm8up+43w5OigNKCPdy3mxbomAoTjjfYwUzJgw7VjXMk5LfMFsMsPX3YGEIf+mvaOLIKcM76zYWmNXTlXEEFFax7JQ4zyEAFgai5zHNBCe1pkq4gRH+B3+1llvf9sJ792/t4XMr5nT1JvOrSMAwDTHO8TS28DmuFWVp3tDAryT7el4xMPDA+4e7inNJ7yOn069ODFPGSlnPD09Y5lX8oZLMXTJTrV26ldEM/KGy/WM8+UVij5O3zEGqkXkjJzp2JyT2HrH8+sZ//7TF/zy+QnXeRlSb24ELGg0PXnpUCRop3pFKwXH0xEPjw+YDgdySGuns4bxfR25U4GKIVnggo458Z2vDSEKpumAulaUuaCGgpQnTPmAO6M+QMiN9s++Xs9o1hCIb0wQI9Gd090dUmLzrpgm3B0ekXJEWVZcLqbw4giAbTSq8UvJhe0oK3/2+Qv1vuf5glpWaG2IQTFNEx4f7vAv//Iv+J//y/+Gzy9X/PRvf0Wv7LpLNEQG+gooVARlLliuVxbPrSvWZUavBbWu6K2iN0WQjbfNTYWpSJikXanU1A62KQiRaFdO28Zm42UKtCt16pcZ8zzjfKHjvl5nrMuC1VR4AAtshozAUVXIQOJGIdstj9W5rcKgGCKVY2La0s6w1LTzb7k2aOshECFyNFos7T02lu60RHxpGhom1uQquDdFDIFpeGxykSMtLoLaKjSZgzYn27UjqnNfuW7csYuhSAwI6SZw2KbW+PTshqtQHZoocHR5o8XsWY2vjT1O7XFqj1N7nNrj1Lcdp7562EgpDgfkzs1AIahScxuWFgw+6arolI+wNGy3lxoGR8xPT611qJAC5xxIXsLTtAHS2dRm66IaTPN346m2qmhNUbSg1BVlnYk2mdPLKZn8naWQDEWyrDgXim6f6ygRn3s7qg3jUJ/Y98odSngFUFhDJtcq9lMzi/NYbLU5+m766NfrFb135JzJAQ3BNKITr1fXLW1oRptFkPOEox5xd/+AT9/9gLoW1NbQeiWntPWbgOo8Xv6+I0/O3KPcW0dv5/FMEhIkJKhkvJwX/PT5M86X61BzATDSg44yIESIspBNe8d8veD19QVrWUYzH5FIOUdD4IKdtCFM/XcrcoQIItgYK8cJgKKUFet1RlkXaCM32gPZlNnBVSRgKSsulytqWemw8hHQhXZpG4PSGsrlite3KwAqdnRDFw5TxuF4HBuTYP+JtrhTyjiFOwDA9XLFl8uM6/mCZb7gen7B9XrholZv9lXx4dP3eH4rqP/vTzifz1iX8ygU6xYQW6OOt3N45+sVl8uZBXPzGUBHTgmHPOEwJUwpw/W3g6lwSGfQFQSkmHCcLLCpF49uG495WfB6vqC2iqUUzPNMhG9dbKNlRX6e8rX1mSI7ibqDHQW1goHWQjAQKd/RuaKL23NKGTHlgVoFv0/jwEcrNlRlwGA32InFeJbu5mawGx+ZTtm3l+6MNwpKhwSikKp8PzmxiypAVNQVZiQAoYdho5D3PsB9Ce1JoaIIhk7HuEkVOnpEsIhyjV06NATk5P6gjU2do2FbE7V9/N7Y49Qep/Y4tcepPU5923Hqq4cNCRkiCYClZcRfigDaIWIPiU02Dejk8pmB+M/rcIIuHcd0Ih9M7MEUv6fvjZvfbb1jWWYknSAhUIatb5rhOSWgUa7QFSdG0ZSn29x1D11upsY53LDtXzdoGVGCMF4WRLY0sUcEPii8EE0cK1O/HoZzUndUvWFZ2PF2OHBLtw0KgPDZ1U66MYbhOEUxNKKd8zoF5+rR0JyL19uGcABArw2r0wjsPQYrgHMd8sta8PT6itczGxjR8dKBj/djxuxyb73HgUIFQhB2PcU0HRHTRGTpxp5qawjdJBsttdeqPW+ONynENvTiW7X3H4hcllpQW8dluQ6bWkuh+kVU3J1OiNMBXYnuoDbT82aK2eA1qAS0zg6xr5eryf/pCM6OHMQQ8eHhAR8eH3C9zHh+fsLl/Iq311dcrzMeHj7iux/+ACjw8vQrU8ul4P/6P/8PSGDDJyIITCHXWlFaRS0LNcUv1BFf5hlrWdDqaqo1nLMUk3VBNcWcGKhfnmxp902jv5YGVZs7C2C18eulcaO0Fau6AwuIOSPLAUPxxNVsTGrSN2m2UAf3c9hFJNJHxDMM+8lTRpomxMCUM+U6I9PPwSX6MOT5um3iotEXUs5MA8Mdq44izpQzDqZxr3YhXyO8zWCNlmA0FiDFNOgZIRq9xHjYOW7Fq/0WDR5+AgA6KR2ABRFvLqbDH7iP4ddufJxEoHdI6DCtTwCWJnewaR+/O/Y4tcepPU7tcWqPU992nPrqYaMWoDdzAqMYLFDuzBwk78ITfTqcuQDwNuvANlmqHTlkxMQum5z4hl4batsUPmB8y1oKFPw6uqLVjtqVPxsj9Ca48KSa0WtlqmvKI9192wZIfRLNmNzYNi+8Te5t8yKmtnRLHRni0u1k6Sflri7DJ9upGUCv1p3RnKuqohaTgIOMbpfJlEdyzkhTAgSmprBdyxdQM2faAehNQZ+44YCndaYO+YhJQCesQBXBWlbyJK9X1NpwPJ1w/3CP3oGn84Kn1xnL2lAbA5XEADHe8uD4DeNkMKBtkBO9LiteXl5xfjujlmKFf9nmwJyG0HarNkjlfLbWUFrHZD9ba4FqResNpaxYCjuXSqCMXCkNtZsdmU3ElLj4rLFPsQBca8Va6TR7o0Sh877FUqsdQG/Gp4wBrRSUdUVpbDiUc8bdMaJpxcvbM15fnvDy/ISX52fMy4zD6QF3H39Az0dSCB6+Q+8Nl1rw+vSCUlbjlTvyQLpFbRW1rKi1cLMEQJIgCREIqpZUaBcgBNTeUQ2d1JXvnRKVDVTVEGDIddKhOcoCABoEKRBt645q2KbJCzG7Fdky7WrrRbkRcnscXNOURoEcbO686I0LK4x3k3JGMA4rxNCgnGnTJpeYbE1A/P0EkxB0RPt2o2erLlF33qxyOGr/t99/144YApIhSu67QoiYpgiBDnnH4ZB7GwV8G6f9ZpcmGze2ubwpFNF8Zq/sCaG9WarbUuKqiCEjiPH4DWlurUF/I1+6j23scWqPU3uc2uPUHqe+7Tj11cNGWZd3aMyQ6rqZMHdGfMHuDDloMOZIRNDNkNQdgZ3yvANrjAlp4gtcl3VUvY8Tn2IYUe82+WYw7kiW+YrL9QrtHa73DZuMcWcq4JmZf8yy6EWAd+lmIkP8vrrG9vDzjvjw2TlXTJP573kakM9p6IZ9RuuWNg5xFA7FlHiSTlywydKOnVCTKXPQ4NUWvprx+GcMZA+OUHX03igXJ0QBtBIN2ri4/Ps6L1hLx7wC19Lxel6YShehqgJcqpGNkAi4uc66mP6yIMDkAYPg0vhOaq3IOeP+/h7TYYJrVasqbA3Di/p6U3IExeTV1GgPYs2JOtARUJTdc0NpY558DiCCQ4jIKYKFYx11LVCwc2sHgJwQEiCWFg6GzLGjqqOCoFMthddWQQyC4/GAjx8fcXc64On5Cy6XM0orqK3g7v4ej9//iJAnlNrQmqJLQvcNRVLkNCF5N19OH2LvmJRz2jvvofeKZsV03eQ3eyt08gOVNRs2JCibdKYXs2G8IYyNhHBhjrQ2IEMSUWABxdRC+Dlh2L5vmmAbAqjTLwKvKQHBO7mGTQpQAjdXvGejX6RkCLMgWVrXN0guJZqMpwqQL5/i5viDFfGNh4RyU4BuRcABwdZzDNGKMH1TudFr1DaTw7+pWrM1InExBNRWEbA5+hCM0ysb6k2+v8ALibnWK3qvRAbtvUabZ34C/WI1f+uIsASBCtBuUPR9vB97nNrj1B6n9ji1x6lvO079J9K324le9LZrqG6Tp54CdUcIW3TDf0Ns4YktUKggpkyHV4uhH0RyqB3NRURFC562xsksCFLMw3nTWSnKWvD2+oqX5y9YlhUAq/XJm7W3exN43PhVN1QojAlvWzGhCL/uDt1fMLYCO9y8PJHfSUV1FmU1S6uK8WF7Y1AIicgKT67OmwMgphYQAkQVhgthqBfgBtWy1BuDKuznDanqLM6LzeXXAhRME3pKMghP6tOkuBbg/LagdqA06soz1ewqKxGJ/hStb02qPDWaU0JQGWgOQHWNWoupsdzh7nQyWUo1KcmG2jtarUQ7GlHBbkGo9U3dgQGnjikWACExbQkLSjEnxJwQUkT3gGfpfu0dEbRHVdA+TDKulTY68aZpQpSAWlZIV0QR0xevqF2gnc1+5nXB2+WCp+dnPH/5gpgSPnz/I6a7Ry5EQ1O6ddldlmUo0DTTNe9QpJBMhk/4WfZ+Sl0gYUEw5Q7tHa0WSCtbitU7dxKyHdxyBllLNwudH9E3SiSGSCTGkdOtOA7kCa8r1nUxhClyXZsTg3BdmBCgbZYAWOo35gQVgReiOX/VNcRjjMiHCTHl8R5Y/MZ5SXAJQx3XD0NnfENjBzoYIwA1PmwfG8B4oxxyi+AGgX2PCHVFQTOflWwDol1vrhGRkE3tY+sWbQ4ALvUZRSCgE3aJ0147tf7dXkMwBNcL+YIpE3mnWvOthgz7e97H7409Tu1xao9Te5za49S3HKf+0w7iTFkWS5/Y+cb+6njv1HDjuG9glfEzAkEK1nDFGtMwW8YF32vl5AaTBQuCNE1MTas7xzAKWpoqSim4vL3h9fkZ1+tloAXuVD2l/o5fawbYO/WqOfc8yRMpwo1xbKiLGPLkPno4fwmmTMDnds6nfQzREFXEIAOfUkNuoqVDoykewArinC/s0oeiCtjJ+1aOUP2JfnNiht87X5StbdOHN7QgxogqsiFzGiAhA6KoraF4qtQQPfJyHb1ialwVN2lCIj6lUEUjmCO6vp1xeX2F9o5P33+P7z59h5wnLMuCGAOiRpSZaEjrlL4rKzXbqQvdUOuCEG0+FCjLjLWsQFfElK24qUO1orXCYG9KEEQYSYOQyHSpWj5cLZgLqCgiUZCnhF4b+lpQlUFzmhJ6o0M6TFSimHJEUOD15RWvX75gvpwhAtw/3CMdTFLPEAlxdMXkDosVkkalfB+U74NFktzIUOYwAJoguaHFYIhRY5MvHK0wryHqzXozR3LrnLc1wBeVHBUdjsK51e6JabdpmhDTNDin24aNv7uhQXy+3ug4U0yIKUKN48vCyANSnoj+2GfE5E2P7B2AcxQDfYSiD2WSNE18p+LNp+oNkgyz6QSNW68Cb6y2OWVy3wO2Yrxeic4JMJyuFwRqNHQomcRgJy0G2FCw1trQ6nfOOTef9BcxJRyEBcTauzWJMieqOnymc4gdUTIMlu52T2z83bHHqT1O7XFqj1N7nPq249RXDxtMHUXogoFOuAd31OWdK3FERv/2WmIPKDFgmia4pGDXLU0LYDgoMX7e1hDpJo0MYFlXXM5nvLw843KmTNztPbxz2gPhccP1dGy7ua5xWHkktufQEQyAMJyXO0kvnlE4X25L1ftolqp2VAz2Gc4b9DRfiO/vN8b3MmrBg4rzF3Ur/qGCCjm/o9GTLUYBzNlSTSAGUgxqrSPlyhN6wFoVSxMstWGtBVU7IIqcsykkGGLgxYZ9Qwv9iWOkwcXAgNTqiuvljOuZqiH39w+2UJimDxIRg39GAMpCB65W4NYFxdLrKkx7qrIRVteOnA8DPYCwKMoLFwEMdZjeG4vQumnDC0zhgTfflSgShLYXc4RGqq+A2AVCEEwTn3TKGfenA0JQzNczlssZvRaklHE4PdgmgS2lQghDrs9lCVOMN3YTTeEkQhLQWkRZF9TSRhEcm1rZZsbsg9ev5jgGPMu5MBvIMZtixo39Q4FGBJNrUkYqe3QRVYU2Xi8kV9IQ378Nu6TDi6NA1DmdIQYiraKGEpFrK6a4I37PatcaKBDQTYZwoJ8wBGZsFNU4+lQiCjEgysZLJQJqvsQ3RDEixQCFK6noKOiLIaA1PpkIO+PyvW9rFFZoKyHA9Yi2zaJtPNWdsvuBbfj66f6sdr9U/CnbPaeE2L1xEgOIby738ftjj1N7nNrj1B6n9jj1bcepr2c2Hj7gjyHj9PKK6+XCIjgzAk//2ONwcqFwtQy/ydvCtQ5Aax2n5c3uZCw6n5jxO4bUuGH13rEsC56+kHtI3XOMyfYU+jtHaIt0nOzM2fLfuk0o3vN3PU3sKSJ3YHxxYUxyE0A50+NrEKYM+00KdgQEwXbSDoIo1vglbkiQz0MpxZwOF6YHu9uf85/tqpa+3VAvAAgJlF3sHaFvMoAMoA2tA5e54loUc2HhWggRB4lQuFQk0JQIEtVGdIRz8oE7qKjCNHfMEaLAcl7owHvDNGV89933SDkzCAgRgw5F7gpyGwOgDFplmVGtKLA18gidWwlQYYMBpRjyY6nzzG6rw8ZUEREQMzmNKdlJv1Lir9VGlCVQh7o3V60BBCvNQWDvfCJCkwOOpwNqWXE+v2EtK3XyDyec7j8gxEzVBqHKSVtZJLisqxVVOSIZIOgDMRExvX7tQO+o6ECMLLLrClgTIxGgNYFoRzN7dQSE64ROx7XnveDOw26IkU2qoNDWye+0jQBVUwIO0wEhCEqhcgpRTnOpwe0OcB1w2r4AFgzYKIuBN4aEfDgg5skm05yiWhfbnKlAU1a0wsLGKLxWNPoGFMMHQd1xUqkGZnvZEJ9a6iji9ZQ0N0IRVRVrqRChfKenftXTy5E/33ofa5bvns8dUxw+hFxdRbDniZG9AZw37en+4ZQ1mF3cKiPdptoDYjKlGw9YAHn4+/jdscepPU7tcWqPU3uc+rbj1NczG+mA/OGIx/uPOL++4peff8Lb+ZXOW5gKIj/Otcr15qG3FLEPytZxcQytZht+4vLr3DoogE6iFKJEz09PmJcFAnLWnBN7WyQ4UkcmgceUcbGg4gVe1RQDot2L369YgFFzdn1MKICbhfJezhCQwUnk/VASr1vKPFu6dOBsqkADWvBFzBOjXQCSEg2iNlOgMEMMt84+jJMn1EoJtSFAEBN5h61VrDbfrZTtszvQm2BeOy5LR+kCVTbrSR4QwSBWGguwVNTWnxViQcDbieYgE4vMWiH/0D5LOnB6uMeHj5+QcrYTO1GQnPi5DY1peJGBGPWuo3EU05OUpVPYiR9h44+mzOft7PjLdCuAIMgxIeUE15TX3tkJtlgxo93rUGGxQH04HSECrKVYMWhHShFTnpCmjFrY5KhaY6rj6YS7u3sGvRFwDb3rFuCt2DLliDjRqVXTCG+1QgEGmMpiu2ypVTSFdF4rGHpWFYQUjHdJxKMar9R5zwpoQ7PiLqZr6exKrejY7I88a1ghqBd5CqRUCwR832IFbb5R8g0QA4Q1GTLfAIABIjgyxuI8cri5zlRp49k2LB7QMNazF6ltaXTf1MUQMGXTPRc2QgMseERDOXvH2ioYYwKLMd0vWYpfudihoG+L0VGpDImC0hjsEX3TKogRCEjGKScvvPYGbbyvEF2acysi7jfBYaz1geS2sQmjPwoAbhSV9vE3Y49Te5za49Qep/Y49W3Hqa8eNlprEAQrHGvjBtw4m8utGQrye+P30jTZ0oeuenHLKeMzCW4DQa0F57c3vL6+YJlnAMBhmsY1bwMFsAUELyrz+/DJcVSHmskyTslEg+iMeaKzU7qqSQfydIiRptVxj73X7fQMGgbl6vhMoxBKPT1N2bzonSnfqQXw85MjXrfPOQIGxj2Lnay1A600dG2QkMa7CYFyhb32wWsdcyERc1GsVcd9aqcDjSkhaMfaK6XmTL1DYfrrYCAIUYyfnOw038di6a1jXld0ETx+/IjHDx+R84HdUQFDtgKiChIU69xQ5xllnlGWBQrB4XTE4XhCPhyJOCg7hpJraws2ynjvXZkmD0EoPRf4Sa3WG9tgEWTOVFWhTGEZBXFi851SQm8NQQKOh+PgPd/dHREEuM4zrpcZyzyb48s4ThO71YLOWGHOu7PQK+Qtxc45T/BULBTmDOqW0lSFupMBxr354pfIbqMQGWosPrddub5iSoPK/h6Z9K2KpXed3gDOQwwRKdBBVtMGD+5EHUEKgRr60s3WqEXeqr2bYNd2VNMcrAQq/xisR2Q0R9swvUeeo1EaaqkDfVGz15ySKXcoOO1cOynH4RxVBNrJoW2d8z449Sb/mQxdrqaJn1JCnNKgRKTkiLQiBFAiUMQ0021TKq45nt6t+RACg0vvG9/Y/aZtatV8oW8Gh05+YFp9H78/9ji1x6k9Tu1xao9T33ac+uphwx3VusxsZ1/LMB7tHWWhlrQbe4wJDrgEcQmxW/SlQySNFGophV+OoIMIW1EZ0ZZKvuvrC66XM9OCMW78NCXXlJxAcuc2iTz9zR9OQhABYhgOjidd8t4cffG0l6rylI3N0G6Nn3Pk+s7+mVb4obIClwAAEXVJREFUZylbHac+bEWB9rWY2R7e5yrY5/sp3Ds6uiG0zpRlsJOo3YGl1fDuM9WcVqvWIEfNCSt/dzocsZaOz29fcJ4rWicXEl1NMYQG4I1toPquMVUQOnRJYSgoDKUJM2QuugJ0xeF4xP3DB+RpopMMrnvOtLt0b0TUgN4g2pFCQMwTpsMJIWVA4ggijjZxajtc3q0Wqn+EwIKlIAyUrhojFlgkBEzHNN4HlHxcAdOxrbWbZjqc/yiUeMxTxjRNELlBBCGYpgmnuxMOxwPWwsLBKWWUWjEvCwOjoXtrrejcD9ChpAQkRWsBrXFOWyX6U8rKDY4Yp1LIC2XTJIWkm66jvp8ylGRsiIJgCtz4bF2DMeydhYkdKUZIDAPZbK1bt9uM2BtpBdiCSAxiqh0MwpAwgkTIRGyhG180BBmbgHhTECtqzlAEAtoGlVvE0ubBAqMy/Q0xDfmEnBMLPW3d9NZtzjrCDTrNoB6hQjURvkMZzlcEpldfUW2+fb7EEEryimk/MdK5l3Ud6fApZ8QULCAbbaMLkCI75TYWo/4WFQ9BoBqdDMKCYDHajip0F6P6u2OPU3uc2uPUHqf2OPVtx6n/VPq2a0M1rmHKGdkQkApAgo6mPDxljcTrSFUOnpmhKTmn91X9qmilQdHRlDzX63XGOi9sTFNWUIc4IMaMUfzDdWepUHceOl6I/saRu8FuQYC/z58PkOgnO3Ms2Li4zlfz59iek/+urQ8ERMbCdwfOVaUCOy3DmsTczIP/saYyh8OEw+EwPmCko+202npFUAauFCPpo53FOkyDNYihR1AMVEsB3N/f4+HxEdfS8NdffsIvn19RvJOu3R89Y0dt61BigQe9zhRnSMkUGojIeNOoHMlFFSiulyueX17w8vqKrg3T8WgLXP1/8EIoFkOZUQN0DocJYTohpAkSkgUvQ9ciHY+jfF0VvQEhZ0wxkvtciOJ5ujJZEVrMCQLrhFoqf7crsnEcuaD53nqnpCYkIKRIjm9gUOgg9ztPE6ZDRj4ckNJEdCEGiGS02oHWRpdOMeQkxIgOKxwLDICOpkAiRIgyCYDeKuUQRUbhZCkFLMjbgr9vrpSLbbx3iHFib79v64CoS0JvXGMsEDTFDpuX1t1pJcSwXTsEYaMjMa6t3bH2DgkYm5DW2VxtKxrtQA9AApKnvwGIRNvUiPFpnfoAAJ2SlTKNNS0gaqON6Kan50UBmExhzmms5Y0j7KhyRwhEDAEQiRJFSkSbVMTQOhagipAOI4jmgEzVxHjdIfC+W+/orRoSpKZ8AggCcgpQTaitYl1Xu4fNV9K3bRKqcXz970Dy+8Aep/Y4tcepPU7tcerbjlNfz2z0wqIcoaEyDWMOTGCOQXGr6+0TVVvBMi8gQMMJZndFGs68sBPo5fXMJjNlHQuGxSwsJBKhzq8GL5SzFyvCFvaGYvgQbGiHGvdQxn/cL6oFFbm579uiPZiT183B+PVlS53xfs35Gfpxmyq/TbFzMSmidVy9lQUELM2WM517Skiji6W9PpGtURIw5plOlu/FUREoKGNoc9RMtaDUijyd8OXlip9+ecZPv3zhyRh0OjFmhEiHvK4da+nj+3y2iHwIY063YLjpU+ecrBsuAMxotVpTHwDCYB8nV4QgP7HWysLEVlHXhU5LIiRnUDOdDXViTgOdokoMC6xq7XRCQRCE1IEgEfk0oTc+d2tEvQA1Lf420sOBBmacZ6ZlnV+tgBXkmYOJ3IhMU0atK8QQqRAicj5gOh4N7SSNo9hn5GkCzAmocu58brW7DQWouPqMO3ijwdZNr50Ntoj+MeZs6XSYmoj2jqbsFeBOgilSSt+pWnMyCw69E4VzXquabTfd1vzgy/oawqakEQ0lVlVUQ1YlBEzuWB1phmmrW6D0e3jHJzcEjhsuIsP+eV026gMU5LOrAEpNdyJa1ILPU8Z0mIhQ1Wqa7SxsdJWVoVgDR7Y3JxpCQFAMZ+4bTzHEq1ln39GXIJr/q50KLb0NRBtgOjyZXTlVQcR9nGwbwsYmWGPDuR82vjr2OLXHqT1O7XFqj1Pfdpz6emZDYcZphuDyZALICkC3xkJ8CToWislemHNZUesCkTCa63QA8+WKZblShxjAlCccjgdy2LClrroq2MWE6bbeLRXtTtRv14IKmzthPLbaf8ZJUzZnOzihFgz4Amlg/SbVvX0GT7zvHbtAYnxn7PE3/xZxbuaNEoM5/1HcZIoAABiKPFWsLhsYNm4fYEiRolcYsmedJVWxtE1vXQSoteDp+Rmfv7xA44S1CdZCZ+F8xhAtFWg27YInIygqg6t4wxpLh/IZTIc6AL2xuUutFfN1Ri0VD4/3+PjpE47HIyCC1qje0U1asPaGVla0um6caHtnKSWkw4ToKFFr/OwOS+WTbuAye6WQRsGOvzo2Ah5Mmm6pRw9GKQZ0ZQGdGAoDWHB2fnSgsytlRQwKbUzzzssVa13x8ZBx//CAlCbMfaH9w6gOhlCpBQmIIEoARNmRs5AG0NVS3rUO1MiRGdWOauvNm/d4qpnNibLp6Ac0a6xEKUIugNYpxacWMIIItexDxPFg/FWzeW4MbgtbGTS7FbKGIMhpwpAghDn1GDAZdSIZ1/R2cwdzokS5ZNAIRJwvLqi+XntHU+eHG3qmTp/gM6QUiTrZ96MV9IUgOJ0OQAiYrzNKIbc454iUJ+N7E00UMY15EUAUKfHeOmz+Y0Izv0H0hmod7JycEFfq0QsX7niWlBOgxsm/QYF6J/qVchpfYxdc5+47irwVNwa83/Tt42bscWqPU3uc2uPUHqe+6Tj11cPG/YePEFhRmqVgj8cjDscDzm+vULzRcVjhSa06TjauqeynQJjjWeYr1mWhB4I5tYnSg7VVYFGEcETOEZsbxnCa7hgV+q65kTsZIlgAuWtmHR1Up7CT9G+dePsN6nSrWOJO/7fo0S1ysyFUdo0bNOi9I4/oHUwtwmTdYmSKL4YbLiuGk3cEzS5ii4/O0+AaaDe0yHiZOooEYc5McbkuaCpYWkdZF6iYTBsiVNu419540iVqJ0iJBZKlsINuTBEatnlJyVQMuvGAbXFd1xmvL6+4Xq+AAMfTHU6HI27TyRJYcDcCsQUzXkswTdaEKjnn1ZCQ2gGQDkEECUAwnrUE9HZT1JYMcQTvnYorznfuhiBkdG1opVmBlyFL8NSpjL9VeZ08TWhrMc5yxJQSDpM3AqKFhhCQQ0JrnJ8Umf5u3egWEwvkWqtoIlboSl5shxpnksWvLKx09IfvPYQAtIoudDRMncpwPAOxBNBUoWgmV2i/KwB5p6bSYZsrERhf3bnEkeu1K8IUkUXMeeuwszicUoTTPFKehi0TXdw0vr3eTi11C8HgKEO4sTCj5NzbZmSSNGQtA4AIK+KTbcORja/MjQaLTsm131AolYCQgKjR5osIVOh8R0R1bD3BUUFrGNW6vRtOVs5Epcpa0EbxJlPjrqVPNJdr2bXeNz+io0ByvBdxJZdI/6Wbf9rH+7HHqT1O7XFqj1N7nPq249RXDxtpmngq144urDpPKeF4uqfRTBMOxzMu5wuW67qlIVWh2F40xn9/OzYHF/y0WBsulxmnEzBNh+E81a+jfn1DeuztsfiOBgjBOF8Np6+6oVCCcYL10+ctZ/YWIQIwnPwtp9bVIgBs/ELghu9367w3iUMucFPwmDJPz2ZYTRsS4jhFq8IclsDRty6KGGFG4CuBCN2mKJKQEgNfa5ZGa0DThKIdTTzI8h2MIKVqaVs+bwyGaCh50EQvtvRlLVRHoLQfNkQpMoDXXtG1YjpMeHj8iJiPaMZbPBwm1FKxrCtqqyil4Hq54PJ2QVkr0jQhxAPidLC0J1BaQa/cMMDm15GNIGE0RiJCZgWhtmBS2BQ7nMvcLGCt60rVENP69o2HKjcvh8MBkDgcUEpEQkqfUSv1tENMkJBQSkEpFb23seh9oQos5ZyIfC3zalr+m94+CwfZzbM30g9omwzMLm8J8eAnI5DwbTLNnAzZVe2oRmEQuJwgOcyu+ILA1GgnfGgObaM7aL1Ff8B17VxN3RAO2PoKMVhn1jQQJS4GACpMtZvyirjtGpdW1XTHjcLBTQzRna6wjRjRVDG+vdMenILQw4YoU8ueiGZ4p+ijlh4mwtkbg3OKMnjZ9Ke29oZ98/mCFd2hdzSpyKA0ZF9m1KUMPwHhRkEtMMYcBrXCefsAexgQlevDP/hGsa4FOuQp9/Hbsccpjj1O7XFqj1N7nPpW49RXDxv/8dd/xSGfcDzcIVl3xilPVoDDCTweDjhOR5wPZ1zneVS8q3HS/naYs3SUwk/jdiIE2E3zfDmjtcZK/BABKwBqnTzA4VDtZEWlAVAlwhxsb80M03m1fB3a3HnbHd048P7OIYud3uxOzYBvEaR2g664A7gNOmIG7vrjQ80kJoRAA/OCwSARIWaEmKBqqICnBbuOVJV/xpAhs3kjAsQ0s2pHb8BaO5YKVCR0USjqKJILoVu6PIwTumtQx5igjY2TJCRMKRga11kcpkSKelOEjJG2CzZXigbnJefpgIcPj0iHjB5M3UMtXaqAKtU5lusF83wFIJiMO51DYoxqbSg/0FmY2scNT9A7/DpyFmOC1cwNpKA1tTQzoLZomipiOhANs4VJviPYTKp1piwNqRMV9Gp0gKEDw4KrWqo5gE1SrrUG3oggJHZ9RVPEnMiz7I1Fgp33RsTTeL2BTq512mK0lKVvIsbGQG/s2BAXETZUuu3uGs1hQ6j3DkM5BYIANmlStSI866AcgssWJqCzGBdj3YZ3y5wJeZNM7G2s82CNmFqjf3BKAPXVBYBtCIJYqhgmExiwzDNqJxJsj0eEydZgzhkhR7TAd6Kd+vUsuFQWh8Y4fo+0D0WHd4a2++PuxN4D3zdDXzekGbaB5IX8GctizbzgdJ5sc0EULtwUqIZI9Z7eO8pqaiIw9HgCghriJ4amDd+0oef7eD/2OLXHqT1O7XFqj1Pfdpz66mHjp8//ioAJUzzidLzHh4cHHI8HxBgwYeIJKwXEJIiTIJwDljlgvS5YV+siqupUQhssXIHaAgaNSrzwzaaoto7z9QqFIueDFZmxCl8gbPBiKacglu5RQM3BO99WRSCWwiytoLe/TS/XVoezBQUuBorEn2mAmBqILRrnrpVamIZMGSpmzeHGeUPG1ztM+lAADRh/s7qHBpCyqS8oU34xCGr3RUPT6FA0ZZdZ75BKZ9i5SEEkpfaOpXVcW0fVgKVWLCsbHsUkCMml2ioSoqFGpmrRYZKEBWIc6K5Kpw5BNMQiBHPZnanpLgw8pa54fXvF9XrB6e4ep/sT0SdYqlQ7ugBdgLUWLOuCeVnQeqVuemJquku3hU7HlISNg9QdRgiWnufPHQ9HrMI5nqaMnOMInAKqJgCwE7hAUkJUHQtcm5/kiUk27eioKH0rvApQIND+82FCPmRyumux+58Gr7MbEqcCTMcJ0ykPu+noiDkigc+0zkbvUOdrR6ghhmJOqBrKBd3SnESODEGJ7ILqG5YgATlkhG5pVuO7YgQpriNyXhNEyN0cayTws3PK1uQKo6DQCwC9+6kHkPEHG7JLZBGAKA6HCFUGGUlCSUAkk78kOsU1TDStWYrYOcrR0s5RgOM03ejPi8n5bU3X+M4DQmKw93DBB6Rz7L2h1g4VuuwQSIPoo3DXVGxqH5utPCUia0Lt+b50lIXcbm6iLLalTTqUvoRqRq2zqLUOZJEbxDgFvoNlQasVKSbkw/tAuY/3Y49Te5za49Qep/Y49W3HKfltKnYf+9jHPvaxj33sYx/72Mc+/v8Yu8TJPvaxj33sYx/72Mc+9rGPf8jYDxv72Mc+9rGPfexjH/vYxz7+IWM/bOxjH/vYxz72sY997GMf+/iHjP2wsY997GMf+9jHPvaxj33s4x8y9sPGPvaxj33sYx/72Mc+9rGPf8jYDxv72Mc+9rGPfexjH/vYxz7+IeP/A4EwPkyisxBGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "show_image('maksssksksss102') \n", "show_image('maksssksksss117') \n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xKIY3A6mnTNw", "outputId": "54405a0f-a944-485b-9aa2-3c422226c921" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using cache found in /root/.cache/torch/hub/ultralytics_yolov5_master\n", "\u001b[31m\u001b[1mrequirements:\u001b[0m PyYAML>=5.3.1 not found and is required by YOLOv5, attempting auto-update...\n", "Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.7/dist-packages (6.0)\n", "\n", "\u001b[31m\u001b[1mrequirements:\u001b[0m 1 package updated per /content/yolov5/requirements.txt\n", "\u001b[31m\u001b[1mrequirements:\u001b[0m ⚠️ \u001b[1mRestart runtime or rerun command for updates to take effect\u001b[0m\n", "\n", "YOLOv5 🚀 v6.1-163-gb53917d torch 1.11.0+cu113 CPU\n", "\n", "Fusing layers... \n", "Model summary: 213 layers, 7018216 parameters, 0 gradients, 15.8 GFLOPs\n", "Adding AutoShape... \n" ] } ], "source": [ "# 学習済みモデル\n", "model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/train/exp3/weights/best.pt', device='cpu')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7_AQvRFiy7ts" }, "outputs": [], "source": [ "from PIL import Image" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "M4adU5WAbwjV" }, "outputs": [], "source": [ "from glob import glob\n", "paths = sorted(glob('data/test/images/*.png'))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kRhneNlRHb4P" }, "outputs": [], "source": [ "imgs = []\n", "for p in paths:\n", " img = Image.open(p)\n", " imgs.append(img)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "1_6bxlYucw54", "outputId": "d9c9f642-5a9b-4dbb-bf9b-3ebeb7c6d4e1" }, "outputs": [ { "data": { "text/plain": [ "25" ] }, "execution_count": 119, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(imgs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Dok2HYpyHjZK" }, "outputs": [], "source": [ "results = model(imgs, size=640)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SrzJ1osOdAwq", "outputId": "394552ca-4093-4c62-fca2-c6d2a8ae61b4" }, "outputs": [ { "data": { "text/plain": [ "25" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(results)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "EeCbvWMMHkm0", "outputId": "8f483706-bdca-40d6-fa83-d98157c26dd3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "image 1/25: 480x640 2 with_masks\n", "image 2/25: 480x640 1 with_mask\n", "image 3/25: 480x640 7 without_masks\n", "image 4/25: 480x640 3 without_masks\n", "image 5/25: 480x640 4 with_masks, 1 without_mask\n", "image 6/25: 480x640 7 with_masks\n", "image 7/25: 480x640 1 with_mask\n", "image 8/25: 480x640 1 without_mask\n", "image 9/25: 480x640 7 with_masks\n", "image 10/25: 480x640 32 with_masks\n", "image 11/25: 480x640 3 with_masks, 1 without_mask\n", "image 12/25: 480x640 8 with_masks, 9 without_masks\n", "image 13/25: 480x640 4 with_masks\n", "image 14/25: 480x640 16 with_masks, 5 without_masks\n", "image 15/25: 480x640 1 with_mask\n", "image 16/25: 480x640 1 with_mask\n", "image 17/25: 480x640 1 with_mask\n", "image 18/25: 480x640 2 with_masks\n", "image 19/25: 480x640 5 with_masks, 2 without_masks\n", "image 20/25: 480x640 1 without_mask\n", "image 21/25: 480x640 9 with_masks\n", "image 22/25: 480x640 7 with_masks\n", "image 23/25: 480x640 1 with_mask\n", "image 24/25: 480x640 1 with_mask\n", "image 25/25: 480x640 5 with_masks\n", "Speed: 25.9ms pre-process, 313.5ms inference, 1.1ms NMS per image at shape (25, 3, 480, 640)\n" ] } ], "source": [ "results.print()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "nDhc4QcgHraG" }, "outputs": [], "source": [ "# results.xyxy[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "GJVixfHtdQgB" }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 423 }, "id": "FS1sJXQkHt5W", "outputId": "484c2e98-0146-42d1-8d30-e23bbec9f325" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
xminyminxmaxymaxconfidenceclassnamepath
0342.870758126.946487400.551483219.8649140.7824810with_maskmaksssksksss102
1184.7779854.586975211.56262238.8221740.6538220with_maskmaksssksksss102
2273.143738272.095123480.840820409.2505800.9647060with_maskmaksssksksss117
3144.60466065.604950193.061172116.9562070.8996932without_maskmaksssksksss121
4382.48391788.885384423.858185129.4794010.8961382without_maskmaksssksksss121
...........................
143173.83175795.323898280.287628245.3211210.9378740with_maskmaksssksksss91
144390.472656139.161362499.295105300.6226810.9054530with_maskmaksssksksss91
145469.360474210.884583552.166687380.3622440.8332390with_maskmaksssksksss91
146319.0528870.665493404.33981381.6756130.4293230with_maskmaksssksksss91
147104.63870210.954498147.84048589.7355040.2802980with_maskmaksssksksss91
\n", "

148 rows × 8 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " xmin ymin xmax ymax confidence class \\\n", "0 342.870758 126.946487 400.551483 219.864914 0.782481 0 \n", "1 184.777985 4.586975 211.562622 38.822174 0.653822 0 \n", "2 273.143738 272.095123 480.840820 409.250580 0.964706 0 \n", "3 144.604660 65.604950 193.061172 116.956207 0.899693 2 \n", "4 382.483917 88.885384 423.858185 129.479401 0.896138 2 \n", ".. ... ... ... ... ... ... \n", "143 173.831757 95.323898 280.287628 245.321121 0.937874 0 \n", "144 390.472656 139.161362 499.295105 300.622681 0.905453 0 \n", "145 469.360474 210.884583 552.166687 380.362244 0.833239 0 \n", "146 319.052887 0.665493 404.339813 81.675613 0.429323 0 \n", "147 104.638702 10.954498 147.840485 89.735504 0.280298 0 \n", "\n", " name path \n", "0 with_mask maksssksksss102 \n", "1 with_mask maksssksksss102 \n", "2 with_mask maksssksksss117 \n", "3 without_mask maksssksksss121 \n", "4 without_mask maksssksksss121 \n", ".. ... ... \n", "143 with_mask maksssksksss91 \n", "144 with_mask maksssksksss91 \n", "145 with_mask maksssksksss91 \n", "146 with_mask maksssksksss91 \n", "147 with_mask maksssksksss91 \n", "\n", "[148 rows x 8 columns]" ] }, "execution_count": 125, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results_df = pd.DataFrame()\n", "for p, n in zip(paths, range(len(results))):\n", " df_ = results.pandas().xyxy[n]\n", " p = p.replace('data/test/images/', '')\n", " p = p.replace('.png', '')\n", " df_['path'] = p\n", " results_df = pd.concat([results_df, df_])\n", "results_df.reset_index(drop=True)" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "YOLOV5.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3.8.13 ('base')", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.8.13" }, "vscode": { "interpreter": { "hash": "195d00c3bc2576aa3aa8d34b1ef69c319bc4c5e1d04057dba8a69b2c34c3aaa0" } } }, "nbformat": 4, "nbformat_minor": 0 }